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Temperature Dependence of the 4f Quadrupole Moment of Yb in YbCuzSi2
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An explanation is provided for the Mossbauer measurements on YbCu2Si2 by which the temperature-
dependent quadrupole moment Q(T) of Yb is obtained. The quadrupole splitting of the ' Yb
Mossbauer line is a direct probe of the noncubic crystalline electric field. We compute Q(T) by using
the noncrossing approximation to a Green s-function formulation of the Anderson impurity problem.
The observed Q(T) behavior is well reproduced by our theory. The zero-temperature value Q(0) is dis-
cussed within the frame of the variational ground state proposed by Varma and Yafet and by Gun-
narsson and Schonhammer.

PACS numbers: 71.28.+d, 75.20.Hr, 75.30.Mb, 76.80.+y

Recently the tetnperature dependence of the quadru-
pole splitting &Fg(T) of the Yb Mossbauer line in

YbCuzsi2 was measured. ' The existence of the split-
ting clearly evidenced the importance of crystal electric
field (CEF) effects in heavy-fermion compounds. The
observed size and temperature dependence, however,
cannot be explained within the conventional theory de-
vised for systems where the f shell is decoupled from the
conduction band. The essential results of these experi-
ments are (i) a finite value of &Fg(T=O) (the splitting
remains almost constant for T (20 K); (ii) a maximum
in Mg(T) at about T~,„=100 K; and (iii) a gradual
decrease of AEg (T) with increasing T )T,„. At-
tempts have been made to explain on the ground of a
phenomenological model' both the above data and the
T dependence of the 4f occupancy. But they remain un-

satisfactory because no links could be established to ei-
ther microscopic theories or conventional thermodynam-
1CS.

There are two contributions to the quadrupole splitting
of the Yb line; one is the electric field gradient set up by
the lattice while the other results from the 4f shell. The
former is practically T independent and cannot explain
the large observed temperature variation of Mg.

The contribution from the 4f shell is proportional to

Q(T) =&3J, —J )

where the angle brackets imply a thermodynamic aver-

age and J and J, are the total angular momentum of the
incomplete 4f shell and its z component. The propor-
tionality factor EC =~@(T)/Q (T) equals K =0.647
mm/sec for ' Yb and contains, among others, a
Sternheimer shielding factor of R =0.2 (for details see
Refs. 1 and 2).

The aim of this paper is to show that the T depen-
dence of ~g for Yb in YbCu2Siz follows from an An-
derson Hamiltonian for an impurity, which includes the
crystalline electric field (CEF) splitting of the 4f shell of
Yb. The finite value of the 4f contribution to ~g(T
=0) is easily understood from the variational ground

i leap&
=A [ i 0&+gk akj i kJm)l. (3)

Here iO) = if' ) i Fermi sea) (i.e., the product state
consisting of a filled 4f shell of the Yb and a
conduction-electron Fermi sea). Furthermore, i kJrn)
=cktJ fj i 0), where cktJ creates a conduction elec-

state of Varma and Yafet and of Gunnarsson and
Schonhammer. ' The T dependence of ~g is well
reproduced by a simplified version of the noncrossing ap-
proximation, 7 s which gives also a small (about 10%) in-
crease of the f electron occupancy nf(T) as T increases.

In order to evaluate Q(T) one must know the quadru-
pole moment for the 4f" configuration of Yb (the other
possible configuration 4f' does not have a quadrupole
moment). The CEF ground state of the J= —', multiplet
is predominantly of J, =

i
~ —', ) character. ' There-

fore one may model the CEF by an axial field with one
CEF parameter 82p only. There are then four CEF levels
consisting of the Kramers doublets

i
~

2 ), . . . , i
+

2 ).
The excitation energies are 188), 308$, and 368). The
function Q(T) is then given by

8

Q(T) = Z &m I(3J,2-J') lm)nfJ (T),
m 1

where i m) denotes the different CEF eigenstates and

nfJ is the thertnal population of state i m). The matrix
elements &m

i (3J, —J ) im) equal 21, 3, —9, and —15
for the four Kramers doublets and

8

g &m i (3J —J ) im&=0
m 1

Therefore Q(T) depends on the differences between the
thermal populations of different CEF levels and is a sen-
sitive probe of the CEF.

We start out by cotnputing Q(T=O). For that pur-
pose we use the model of an impurity described by the
Anderson Hamiltonian. According to Varma and Yafet
and Gunnarsson and Schonhammer the following Ansatz
is made for the ground-state wave function:
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tron with quantum numbers k, 1 =3, I, and m and f)
creates a hole in the 4f shell in the CEF eigenstate —m

of the J= —,
' multiplet. The partial occupancy of the

latter is nfj =A gk ~ ak Jm ~, and equals

nfJ =(1 —nf)
r 1

(4)
zTp I+Am Tp

Here I is the well-known resonance width resulting from
the hybridization between f and conduction electrons.
The A are the bare CEF excitations measured from the
ground-state doublet and Tp is the Kondo temperature.
The latter describes the shift of the ground-state energy
(in the presence of the crystal field) due to the hybridiza-
tion. Furthermore,

8

nf= g nfJ .
m 1

For a given set of values 6, I, and Tp one can readily

calculate Q(T=O) (and nf) by using Eqs. (4) and (2).
Alternatively one can use as an input 6 „, Tp, and nf
and determine instead Q(T =0) and I . In fact, knowing

Q(T =0) from experiment provides for a simple way of
our estimating I and 82. The low-temperature magnetic
susceptibility will fit the value of Tp. This will be de-
scribed in more detail in an extended paper.

Next we want to determine the T dependence of the
quadrupole splitting. For that purpose we must compute
the nfjm(T) Th. is is done within the noncrossing ap-
proximation (NCA) ' to a Green's-function formulation
of the impurity problem. All thermodynamic informa-
tion is thereby contained in two normalized spectral
functions A (rn, T) and B(ro, T) which refer to pseudo-
fermion and pseudoboson propagators (the fermion prop-
agator refers to the f hole while the boson propagator
refers to the filled f shell). In terms of these spectral
functions the partial occupancies nfl are written as

f +"-(d(/rr-)A ((,T)e

Z f '"(d-gin)A (g, T)e t"+f'"(dg/&)8(g, T)e t-
The spectral densities fulfill a system of coupled integral equations, 7 s through which 8((,T) is connected with the self-

energy & (rp) of the pseudofermions and A ((,T) is connected with the self-energy II(rp) of the pseudobosons. For
details we refer to Cox and co-workers. ' At finite temperatures the integral equations have to be solved numerically
which is usually achieved by iteration with the spectral function of noninteracting pseudofermions as the starting value,
i.e., A (rp) =H(co+ ef —6 ). (The energies of the CEF states with respect to the chemical potential are —ef+6
with ef &0 for Yb. ") To calculate the partial occupancies nfj (T) we approximate the spectral functions A (rp, T)
and B(rp, T) by

r(1 nf)f(rap—rp)—
(rp+ef —Z )'+ [I (I —nf) f(rpp —rp)l' *

8"'(rp, T) =11(I—nf)a(rpp —rp),

where rpp= —ef —Tp. The function f(x) is the Fermi
distribution function. The expressions (6a) and (6b) are
deduced from the iterative solution at low temperatures.
The Ansatz focuses on self-energy corrections which are
associated with the sharp resonant structure in the pseu-
doboson spectral function. The low-temperature f-
valence nf(T) calculated from Eqs. (5) and (6) for van-

ishing CEF splitting compare favorably with published
NCA data at temperatures T~ Tp. The full NCA,
however, predicts a less rapid valence saturation in the
high-temperature regime which we do not consider in the
present paper. We would like to mention that when Eq.
(5) is evaluated with A (c0) and 8(ro) given by Eqs.
(6a) and (6b), the values nfJ (T) go smoothly over into
those of Eq. (4) when T 0.

We have evaluated Q(T) by using Eqs. (2), (5), (6a),
and (6b). Thereby an appropriate choice must be made
for the input parameters nf, Tp, and the crystal field
W=382. Within our approximation the partial occu-
pancies nfJ (T) do not depend on the f-level position ef.
The width I is calculated from the relation nf
=gnfj (0) If we ta. ke the ratio [Q(T) —Q(0)l/
[Q(T,„)—Q(0)l the factor K=DE@(T)/Q(T) drops

(6a)

(6b)
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FIG. l. Temperature-dependent quadrupole moment Q(T)
for the 4f shell of Yb in YbCu2Siq. The curves indicate the ex-
perimental points (see Ref. I) while the solid curve is accord-
ing to our theory as explained in the text. The values of the
parameters are shown.
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FIG. 2. f-electron occupation nf as function of T for param-
eters as used in Fig. 1.

out. The best fit to the experimental data was found for

nf =0.82, To =200 K, and 8'= —1.67 meV. Results are
shown in Fig. 1. With these parameters also Q(T=O)
was calculated as well as the magnetic susceptibilities
Z~~(T =0) and Z~(T =0). The corresponding equations
for the latter are found, e.g., in Ref. 6. The following
values were found: Q(T=O) =3.6, X1(T=0)=12
X 10 emu/mol, and X~(T =0)/X()(T =0) =0.43. (Z~
contained also a Van Vleck contribution. ) The numeri-
cal results are rather sensitive to the choice of To. For
example, a value of To=225 K gave a much poorer
value than the optimal value. The value nf =0.82 is in

agreement with L111 x-ray absorption data. ' The T
dependence of nf(T) is found to be small (see Fig. 2)
and this is again in accordance with experiments. ' '

The zero-tetnperature value of Q, together with the
experimental value &Fg(T=4 K) =0.946 mm/sec, ' im-

plies that the lattice contribution to the quadrupole split-
ting is ~@1,«= —1.4 mm/sec. This is consistent with a
direct estimation of ~gh« from the CEF parameter
W. ' Concerning the susceptibility, the most recent mea-
surements give 11(T~0)=28&10 emu/mol, X~( /
X~) =0.3. ' Our computed value for the susceptibility
anisotropy is not too far from the experimental value,
but the calculated Z1(0) is too small by a factor of 2.
The Z~~(0) value is mainly dictated by I which is fixed by
the T dependence of Q(T). Therefore we speculate that
the difference between the experimental and the calcu-
lated X~~(0) is due to quasiparticle interactions (Stoner
factor).

The above calculations have employed the Anderson
tmpurtty Hamiltonian in the limit of large U and orbital
degeneracy Nf (noncrossing approximation) to calculate
the temperature-dependent quadrupole moment for
YbCu2Si2. From the experiments it seems that lattice
coherence effects are not very important. '5 A satisfying
theory to include them is at present missing. For T =0 it
is possible to extend the above theory and to include

effects resulting from finite value of U. Also, one can go
one step further in the 1/Nf expansion and include the
"1/Nf subspace. "' Gunnarsson has explicitly checked
that for the magnetic susceptibility of YbCu2Si2 both
effects are small. '

Neutron-scattering experiments have indicated that
the CEF in YbCu2Si2 deviates from a purely axial one
and contains also fourth- and sixth-order terms. Howev-

er, when we use the CEF parameters suggested in Ref. 9,
we obtain a too small temperature variation of Q(T). In
principle it would be possible to determine the CEF pa-
rameters from a least-squares fit of Q(T) and X(T).
This requires that the theory is not only qualitatively,
but also quantitatively, correct. For that reason we are
at present extending the work by including the shifts
ReZ~') and using better expressions for 8(ro). Thereby
we want to study how fast the convergence is of the com-
putational scheme shown by relations (6). Also it should
be interesting to compare the parameter values obtained
for the Anderson Hamiltonian when Mossbauer data and
optical data' are used. At present there are no optical
data available for YbCu2Si2.

In conclusion, we have demonstrated that the Ander-
son impurity Hamiltonian can well explain the measured
T dependence of the quadrupole moment of the 4f shell
in Yb.
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