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The diffusion rate of H and D in Nb is calculated with avoidance of the usual adiabatic, linear-
coupling, and Condon approximations. The method employed is a generalization of the standard small-
polaron theory with explicit account taken of the coupled interstitial-host vibrations. It is applicable in
the medium temperature regime, 50 K< 7"< 300 K, and is not limited to light interstitials. Whereas a
harmonic calculation exhibits the qualitative features, anharmonic terms have to be included to get

quantitative results.
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The diffusion of hydrogen in metals has been the sub-
ject of numerous investigations both theoretically and ex-
perimentally; see, e.g., Fukai and Sugimoto' for a re-
view. Apart from the technological aspects one of the
reasons for this interest is the small mass of the hydrogen
which makes it ideally suited for studies of the transition
from quantum-mechanical behavior (tunneling) to a
more classical diffusion process. A particular advantage
is the large mass ratio between its isotopes H, D, T, and
the analogous case of u *. Most recent work in this field
is limited to the low-temperature regime (7 <50 K). In
this Letter we present a method suitable to intermediate
temperatures (50 K < 7 <300 K). As a test system we
take H and Nb at low H concentrations.

Let us first summarize the experimental results rele-
vant to this work, taken from the review? if not stated
otherwise. Hydrogen occupies tetrahedral sites in the
Nb lattice. The induced long-range displacement field is
isotropic and the nearest neighbors are displaced by
about 0.1 A.? The vibrational spectrum of the H is dom-
inated by two localized vibrations with frequencies of 27
and 43 THz, respectively. These localized vibrations ac-
count for nearly 99% of the spectral intensity. Addition-
ally the H participates in the lattice vibrations (band
modes) and its amplitudes are strongly enhanced for
some of these vibrations (resonantlike behavior).* These
latter vibrations determine, because of their lower fre-
quencies, the temperature dependence of the Debye-
Waller factor below 1000 K indicating their importance
for mobility at not too high temperatures. Coherent
(bandlike) tunneling of H cannot be observed in pure Nb
but has been found for H trapped at O and N impurities;
see, e.g., Wipf and Neumaier.® The diffusion rate in Nb
has been measured by numerous groups for temperatures
ranging from 110 to 500 K. It can be described by an
Arrhenius law, D =Dgexp(—E,/kT), where for H the
activation energy, E,, changes at 7=250 K from 68 to
106 meV, whereas for D a constant value of 127 meV
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was found above T=150 K.

In a theoretical treatment, one can distinguish various
temperature regimes of the coupled H-host system. In
the limit 7— 0, all phonon and electron degrees of free-
dom are frozen and the H can only move by coherent
tunneling. In this process the H plus its surrounding dis-
placement field and its electron cloud move from one site
to an equivalent one without excitation of phonons or
electron-hole pairs. With increasing temperature, tun-
neling will also occur between excited states, so that the
coherent tunneling rate becomes temperature dependent.
However, even at very low temperatures transitions be-
tween nonequivalent configurations, i.e., with excitations
of phonons and electron-hole pairs, will dominate. With
increasing temperature, first the electronic excitations
and later the phononic ones dominate.® This changeover
causes a minimum in the transition rate which has been
seen for ut in metals.” For H itself, evidence for elec-
tronic dressing effects is gained from the change of the
tunnel splitting at the transition to superconductivity.®
The first phonons to be excited are the long-wavelength
ones. In this regime the incoherent transition rate can be
calculated by path-integral techniques if we assume that
Debye phonons are linearly coupled to the H position. *!°
If we increase the temperature further, the detailed
structure of the coupled H-Nb vibrational system be-
comes important until finally the localized H vibrations
are excited. It is this temperature region which is the
subject of this note. The transition rate will be dominat-
ed by the phononic degrees of freedom. Summing!? over
the electronic states, one gains an electronic shape func-
tion which accounts for the energy exchange with the
electronic heat bath. This electronic shape function
eliminates the divergence in the purely phononic problem
caused by the coherent terms, i.e., those involving no
phonon absorption or emission in the transition.'®© We
will make use of this property in following the standard
procedure of omitting these singular terms whose weight
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goes rapidly to zero with increasing temperature. Other-
wise we will neglect the electronic shape function since it
is much narrower than its phononic counterparts and
since our results do not depend strongly on the width of
the total shape function.

We propose a new method which allows us to take the
actual structure of the vibrations into account and which
overcomes some limitations of previous work. Our
method is a generalization of the standard approach to

W =(w)),

w/=Qa/h) | (¥;(m) | H = Ein | ¥ (n))| 26(Eii — Ef),

where ¥; and ¥, are the initial- and final-state many-
body wave functions, m and n denote the respective exci-
tational states, ({ - - - )),, denotes thermal averaging over
the initial states m and summation over the final states n,
and finally E;, =(¥;(m)|H|¥;(m)). To evaluate this
expression, additional approximations were introduced:
(i) an adiabatic approximation to decouple the H and
lattice degrees of freedom, (ii) the assumption of linear
coupling between phonons and defect position, which
means that the phonons are merely displaced in the tran-
sition but not altered, and (iii) the Condon approxima-
tion that the H tunneling element is independent of the
phonon occupation. Under these approximations the
Fermi “golden rule” expression becomes identical to the
phonon part of the transition rate calculated by the
path-integral method (both omitting the coherent
terms).'® One thus arrives at a simple expression

w=Qn/h)|J|? 7|2 (3)

This equation can be evaluated approximately, and one
finds in the high-temperature case

W= (n/4h2E.kT)"2|J| 2exp(— E./kT). 4)

The activation energy, E., in (4) is the so-called coin-
cidence energy, i.e., the minimal energy necessary to de-
form the lattice such that the initial and final configu-
rations—of H plus lattice—are equivalent. The most
successful extension of this simple model, still within the
adiabatic approximation but improving on the Con-
don approximation, is the occurrence probability ap-
proach,'>!3 where one evaluates J for all coincidence
configurations and averages with respect to lattice energy
and excitation of the localized H vibrations. These ap-
proximations explain the observed H diffusion qualita-
tively at least.

Whereas the previous approximations relied on a
linear (and, by implication, weak) hydrogen-phonon in-
teraction, here we want to drop this restriction, which is
inconsistent with the occurrence of resonant vibrations
and with comparatively large self-trapping energies.
We, therefore, do not treat separately the hydrogen and
lattice degrees of freedom in (2) and thus we avoid the
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absolute diffusion rates for light interstitials by Flynn
and Stoneham'!' which involves several distinct ideas.
The first is that sensibly localized states exist, between
which transitions occur. The second, related, idea is that
of self-trapping: The interstitial leads to a distortion of
the host lattice which effectively immobilizes the intersti-
tial. The transition probability can be found by use of
the Fermi “golden rule” expression for quantal transition
rates

(1)
(2)

adiabatic, linear coupling, and Condon approximations
of the earlier calculations. In a previous paper'* we have
shown how the rate can be evaluated by an “embedded
cluster” method. The calculation can be broken down
into the following stages: (i) choice of interaction model,
(ii) calculation of structure, energies, and eigenmodes,
(iii) evaluation of the tunnel splitting and of the transi-
tion probabilities w/ and the total rate W.

For the interaction we used the model of Sugimoto
and Fukai,'> where the H-Nb interaction is via a double
exponential potential smoothly cut off after the second
neighbor and where the Nb-Nb interaction is described
via Born-von Karman parameters. The validity of this
potential is certainly limited*!® but should be sufficient
for our purpose since the nearest-neighbor displacement
and the localized vibrations, which matter most, are
correctly reproduced. In agreement with experiment, the
stable configuration of the hydrogen interstitial is
tetrahedral. We find for H a self-trapping energy of
E4=470 meV, where 300 meV is potential energy and
the change of the zero-point vibrations contributes 170
meV. The minimal coincidence configuration energy is
E.=41 meV (31 meV potential energy and 10 meV
zero-point motion) and the classical saddle-point energy
is E; =61 meV (potential energy only).

As a first approximation we take as eigenstates in the
initial and final configurations the harmonic ones ob-
tained by diagonalization of the dynamic matrix for clus-
ters of 6 to 21 atoms. As in the full problem the eigen-
modes are split into the three localized vibration modes
and the rest in-band modes. Using these eigenmodes and

a correction term for the rest of the lattice,!* we find at
T=0 K a tunnel splitting of AE7=0.01 meV, smaller
than the value of 0.2 meV observed for H trapped in
Nb-O. This underestimate is probably due to a slightly
different geometry for Nb-O-H as compared with Nb-H.
Our value will also be an underestimate because the
overlap will be smaller for the harmonic wave functions
than for the exact ones. Comparing our results with
WKB results,'* and assuming a sinusoidal potential
shape, one gains a correction factor of approximate-



VOLUME 60, NUMBER 22 PHYSICAL REVIEW LETTERS 30 MAY 1988

ly 1.3.

The total transition rate sums over all possible initial and final mode occupancies, with energy conservation as the
only restriction. With increasing temperature, the number of terms diverges rapidly. In order to evaluate (2), there-
fore, we divide the modes into strongly and weakly coupled ones. The latter ones we treat by the usual small-polaron
formalism, whereas we sum over the strongly coupled ones explicitly. Equation (2) is transformed into

w=2n/n |{¥;(m) | H— § (Ein+Ef) | ¥ (n) | °G(Eie — Ef2). (5)

Here the § function is replaced by a shape function which consists of two distinct factors. One comes from the line
broadening, i.e., it accounts for the broadening of the sharp modes of the atomic cluster by the embedding lattice. We
take a form

G.(0)=0/Vm)W,expl— (0 — Q) 2/W2], 6)

where W, =X ,w°(m,+n,) is the total width and AQ =X ,Aw°(m,—n,) is the difference in vibrational energy be-
tween the initial and final states. As widths w? of the individual modes o, we took zero and 1.0 THz for the localized
and band modes, respectively. The final result shifts only slightly when we change the width of the band modes from
0.5 to 2.0 THz. The second factor in the shape function stems from the change in mean displacement of the weakly
coupled modes outside of the cluster as the hydrogen atom jumps. It corresponds to the dressing terms in (3). Its mag-
nitude is, however, strongly reduced since we have included the bulk of the dressing explicitly in (5). It accounts mainly
for the long-wavelength phonons. To simplify the evaluation we may take the high-temperature limit of this term,

Gr(w) =(167ERkT) ~expl— (hw+4ER)*/16ERKT], @)

where we estimate from the overlap of 7=0 K that [

Er =6 meV. To evaluate (5) it was found sufficient to as (4) with an activation energy of =30 meV close to

include excitation levels up to n,m =4 and transitions up the coincidence energy of our model. At higher temper-
to n=m % 2. Figure 1 shows our results for the diffusion atures, scattering from the band states into the localized
coefficients of H and D, together with the experimental vibrational states of the H becomes possible, nj,c =0
values. From 7=50 K upwards, we find an Arrhenius — niec=1. These transitions with an excited localized
behavior with a sudden change in activation energy at state have much larger tunneling elements and hence be-
T=250 K. This kink can be understood from the partial come dominant. At still higher temperatures, transitions
rates, w”/. At low temperatures transitions are only pos- between excited H vibrations become dominant. This
sible without exciting the localized vibrations of the H. general behavior is in qualitative agreement with the re-
The transition rate is therefore determined by the in- sults gained by the occurrence probability approach. '3

band excitations only and can be described by a formula The model so far is able to describe the general behav-

ior. It severely underestimates the diffusion constant,
however. This has to be expected, since using harmonic
wave functions, one underestimates the overlap between
final and initial states. So far we have included the actu-
. al potential shape only in the Hamiltonian in (2) but not
in the wave functions. To get a better quantitative
agreement we have to improve on the latter. For this we
studied the anharmonic expansion parameters of the po-

Tu tential energy at the initial and final equilibrium sites.

b i Three types of anharmonic terms were found to be im-
e =S portant:

g . (i) Fourth- and higher-order terms in the localized H

10701 N e IR ~= = § vibrations (¢“uil.). Including these terms leads to an

AN T~ - increased tunneling rate at 7=0. This can be estimated

Tl otarm ] from quasi one-dimensional models including only the lo-

1072 TS~ T calized modes.'* We estimate that the “harmonic” tun-

s ! N neling frequency should be corrected by factors of 1.3

0 5 10 15 20 and 2.6 for H and D, respectively. These factors account

1000/ T (K) basically for the difference in tunnel splitting in a sine-

FIG. 1. Diffusion constants of H and D in Nb: solid line, shaped potential with WKB-type expressions and an ex-

experimental results (Ref. 2); dashed line, calculation with pre§§ion like (2) with ha{‘monic wave fun°ti.°n5~
harmonic wave functions; dash-dotted line, calculation includ- (i1) Third-order couplings between localized and band

ing anharmonic corrections. modes (¢(3)ubanduﬁ,c). These terms are important for
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the low-temperature behavior. They account for the
reduction of the localized frequencies when the sur-
rounding lattice is appropriately deformed.

(iii) A third-order coupling between two of the local-
ized modes due to the extremum at the nearby octahe-
dral interstitial site.

If we include the third-order anharmonicity by first-
order perturbation theory for the wave functions, and
take the correction factors of (i), the agreement with the
experimental values is markedly improved without
change in the general shape of the curves. The main
remaining deficiency is the low-temperature activation
energy which is too low. We think this is caused by
deficiencies in the underlying model of the H-Nb in-
teraction, which underestimates the effects of the H on
the host lattice.*

As far as the method is concerned, we have demon-
strated that a lattice-dynamical model of quantum
diffusion is able to explain H diffusion. The advantage
of such a model is the possibility of our studying the
influence of the individual processes contributing to
diffusion in detail. The applicability of such a model is
not restricted to light interstitials.'* The method is lim-
ited on the low-temperature side by the transition to
coherent processes, and on the high-temperature side by
the steep increase of the number of states which has to
be included. However, this approach can bridge the gap
between the low-temperature path-integral calcula-
tions®!® and the high-temperature calculations.'” More-
over, the method avoids the restrictions of the adiabatic,
linear-coupling, and Condon approximations, and can
exploit any newer developments in interatomic poten-
tials.

As regards the special case of H in Nb, our calculation
shows that both the low- and high-temperature diffusion
are quantum processes. This is evidenced by the isotope
effect on the high-temperature activation energy which is
much larger than the “classical activation energy” of the
model.

Part of the work described in this report was undertak-
en as part of the Underlying Research Programme of the
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