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Numerical simulations of two-dimensional model equations show that a coupling between amplitude
and vertical-vorticity fields allows chaotic flows near the onset of Rayleigh-Bénard convection in
large-aspect-ratio domains. In cylindrical cells, mean flows arising from this coupling lead to a chaotic
nucleation of dislocations that is remarkably similar to recent observations in convection experiments.

PACS numbers: 47.20.Bp, 47.20.Tg, 47.25.A¢

Recent optical studies of the transition to chaos in
convecting fluids'~3 have provided valuable insights on
the pioneering experiment of Ahlers and Behringer.*
The latter experiment, by the measurement of the time
dependence of vertical heat transport through a convect-
ing fluid, showed that chaotic states existed close to onset
in large-aspect-ratio cells, a conclusion in naive contra-
diction with the existence of a finite band of linearly
stable wave numbers.® The recent visual experiments
confirmed that chaos can occur near onset, and that this
chaos is associated with the dynamics of defects (disrup-
tions of the local periodicity) in the convection rolls. In
particular, a simple repetitive defect nucleaton mecha-
nism was found close to onset! for fluids with Prandtl
numbers 6==0.7.

In this Letter, we demonstrate that a key theoretical
element for understanding these experimental results is
the generation of mean flows, i.e., flows whose length
scales are large compared to the wavelength of convec-
tion rolls. Mean flows arise when vertical vorticity is
driven by roll curvature and amplitude modulations.®
This coupling has been conjectured®® to be important in
understanding the transition to chaos for fluids with
small to intermediate Prandtl numbers (6 S1), and is a
crucial ingredient in a correct description of long-
wavelength instabilities such as the skewed varicose.’
Mean flows have been observed experimentally but only
for certain stationary states,'® e.g., nearly axisymmetric
rolls. We show here for the first time that such a cou-
pling actually leads to chaotic, yet experimentally rea-
sonable, flows.

This conclusion is especially interesting since it is
known that time-dependent states can arise quite gen-
erally from the competition of different wavelength selec-
tion mechanisms.'! These mechanisms occur in the pres-
ence of finite lateral walls or of different kinds of defects
such as focus singularities or grain boundaries. By nu-
merical simulation of model equations in large domains,
we have found that evolutions governed solely by com-
petition between wavelength selection mechanisms [e.g.,
Egs. (1)-(4) below with g=0] are asymptotically
periodic or stationary in time. Mean flows therefore play

a major role in the generation of chaos near onset.

Our results are obtained by numerical integration of
2D model equations of convection. These equations gen-
eralize the Swift-Hohenberg equation,'? which has been
shown by analytical® and numerical'? studies to repro-
duce complex pattern formation of convecting fluids near
onset. The equations we use are the following:

@+UVyley.0 = [r= @+ |y +yiap. Q)

A% (x,y,t) =gVyXVAy- %, ©))

Ux,y,t)=Vx(£z), (3)
with boundary conditions

y=nVy=0, {=n-V{=0, 4)

where n is a vector normal to the boundaries, and the
operator V =92 + Gyzy is the 2D Laplacian.

The fields and parameters in Egs. (1)-(4) have the
following meanings. The field w(x,y,t) can be con-
sidered proportional to the fluid temperature in the mid-
plane of a convection cell. (The midplane is described by
Cartesian coordinates x and y which have been normal-
ized to the depth of the fluid; the direction of gravity is
— Z; the time is measured in units of the vertical thermal
diffusion time ¢,.) The field {(x,y,t) is a vorticity poten-
tial, with —A{=Q-Z giving the vertical component of
vorticity Q =VxU. The variable r in Eq. (1) is an
effective Rayleigh number or bifurcation parameter,
measuring the extent to which the convecting fluid is
driven out of equilibrium by a vertical temperature gra-
dient. For laterally infinite cells, y =0 is the only stable
state for » <0. The parameter g in Eq. (2) is some mea-
sure of the Prandtl number o, with large g corresponding
to small o. Another parameter enters for finite cells:
The aspect ratio I is a typical lateral dimension normal-
ized to half the critical wavelength A./2 =n=/k., where k,
has been set equal to 1 in Eq. (1).

These equations, although much simpler than the five
Boussinesq equations in three space dimensions, still con-
tain the basic physics of convection near onset: a con-
tinuous transition to a spatially periodic state as some
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FIG. 1. Stability diagram for 1D rolls of wave number k for
Egs. (1)-(4) when g=10. The various lines are stability
boundaries for CR, Eckhaus (E), and SV instabilities. The +
and — signs indicate the sign of the eigenvalue upon crossing
of a boundary; the region of stable wave numbers is shaded.
The dotted line is the selected wave number for axisymmetric
rolls.

physical parameter (here r) is increased; stable states
whose wave numbers are limited by linear instabilitites
such as the Eckhaus, crossroll (CR), zigzag, and skewed
varicose (SV)>!'* as shown in Fig. 1; boundary condi-
tions [Eq. (4)] that force nontrivial constraints on con-
vection rolls, e.g., that rolls are normal to boundaries;
and a coupling to vertical vorticity that leads to mean
flows.

The nonlinear term y?Ay in Eq. (1) and the operator
on the left side of Eq. (2) are particular choices from the
class of models considered previously.'* The original
motivation was to construct models for which the wave
number selected by axisymmetric convection (the dashed
line in Fig. 1) lay outside the stable band,® and was also
unstable to the SV instability at higher Rayleigh num-
ber. Although the states we study are typically not ax-
isymmetric, other models that we have investigated for
which this criterion was not satisfied'* do not show
chaos. The vorticity equation, Eq. (2), corresponds to
the suggestion of Siggia and Zippelius® for free-slip con-
vection, except for the absence of a time derivative on
the left side, which eliminates the oscillatory instability.
We consider this a useful simplification in interpreting
time-dependent flows near threshold.

Efficient numerical codes for solving these model equa-
tions have been developed in cylindrical, '* rectangular, '?
and periodic'® geometries. The simplicity of these equa-
tions allows long integrations (many horizontal diffusion
times 7, =T'2) in large cells (I S30), permitting a de-
tailed study of the pattern evolution and a statistical
analysis of corresponding time series. Typical runs in-
volved our fixing the parameters r, g, and T, specifying
an initial condition wo=y(x,y,0), and integrating for a
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FIG. 2. Contour plots of the amplitude field w(x,y,z) (left
panels) and the vertical vorticity potential ¢(x,y,z) (right
panels) at times ¢t =2899, 2917, and 3119, from a numerical
simulation of Egs. (1)-(4) for T=7, r=0.5, and g=10.

time ¢ S507,. Initial conditions consisted of random
fields, 1D rolls of given wave number k, or the final state
of a previous integration which possibly had different pa-
rameter values. Only small portions of the 4D parame-
ter space (r,g,T",wo) have been explored.

Our main result is the discovery of chaos in cylindrical
cells over a range in r for g=10, and the similarity of
the evolving spatial patterns to recent optical experi-
ments. Representative spatial evolutions of chaotic
states are given in Figs. 2 and 3. Both close to onset in
large cells and further from onset in smaller cells, the
chaotic dynamics are similar to that first described by

FIG. 3. Contour plot of y(x,y,t) at time t =818, close to
onset (r =0.08), and for a large aspect ratio (I'=14).
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Pocheau, Croquette, and Le Gal': compression of rolls
centered on focus singularities, nucleation of two disloca-
tions, and climbing of these defects towards the lateral
walls, where they annihilate. The process repeats itself
irregularly. For the I'=7 cell, the dislocations disappear
directly at the lateral wall, while for the T =14 cell, the
dislocations climb towards the wall, then glide towards
the focus singularity where they disappear. The latter
case is seen experimentally. '

The contour plots of the vorticity potential in Fig. 2
are the stream lines of the mean flows U in the convect-
ing fluid. Four regions of vertical vorticity build up, with
the corresponding mean flows advecting fluid towards the
center of the cell. This compresses the central rolls until
two dislocations nucleate, at which point vorticity dipoles
appear centered on the defects. Measurements of local
wave numbers show that the mean flows decrease wave
numbers near the lateral wall and increase wave num-
bers near the center of the cell. The central wave num-
ber increases rapidly with time until it lies significantly
beyond the SV boundary, approaching closely to the
Eckhaus and CR boundaries before defects appear (Fig.
4). As the dislocations appear, the ¢ fiéld decreases rap-
idly in magnitude, and the local wave numbers are re-
stored to values close to k., so that they lie within the
stability band (Fig. 4). A symmetry breaking occurs in
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FIG. 4. Wave number distribution k(x) across the center of
the cell just above (t=54) and after (+=67) nucleation of
two dislocations, for parameters I'=7, r =0.5, and g =10. The
lines denote where the Eckhaus, SV, and cross-roll stability
boundaries lie, derived from Fig. 1.

which defect nucleation alternates successively on either
side of the vertical symmetry line, which also agrees with
experiment.! At much later times, the axis of symmetry
might rotate through some finite angle as seen in Fig. 2.

The extreme values attained by the central wave num-
ber in Fig. 4 (well beyond the SV branch) are difficult to
reconcile with the linear stability diagram, Fig. 1. One
might guess that extreme wave numbers occur because
compression of the rolls by mean flows is occurring faster
than the growth of linear instabilities. This idea is con-
tradicted by stable stationary states found near onset in
slight smaller-aspect-ratio cells, for which the central
wave number lies well beyond the SV boundary. This
suggests that curvature of the rolls significantly alters
the applicability of the linear stability analysis, stabiliz-
ing rolls with large wave numbers. This conclusion is in
agreement with small-r laboratory experiments, which
also found stationary states with local wave numbers
that sit significantly outside the band of stable wave
numbers. '

A representative chaotic times series and power spec-
trum for the mean square amplitude (y?) (which is
linearly related to the vertical heat transport) are given
in Fig. 5 for r =0.5 and I'=7.0. The time series is clear-
ly chaotic out to the longest integration times of about
15074, which implies that the series is statistically sta-
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FIG. 5. (a) Time dependence of {y?), for the chaotic run of
Fig. 2, with =7 and r =0.5. The short vertical-diffusion time
scale of the nucleation events (widths of the sharp peaks) and
the longer horizontal-diffusion time scale separating the peaks
(representing wave-number adjustment) are in good agreement
with experiment (Ref. 1). (b) Corresponding power spectrum.
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tionary. Further evidence that the time series is chaotic
comes from an estimate of its fractal dimension with a
cluster algorithm,'® which gives a surprisingly low value
of 2.9 for a series of 4096 points. This dimension is
greatly smaller than the phase-space dimension of
= 16000 representing the total number of numerical de-
grees of freedom used in the simulation. The power
spectrum of {y2)(¢) in Fig. 5(b) is broad band, roughly
constant at low frequencies and falling off approximately
as a power law at higher frequencies, with an exponent
of about —6. This behavior is consistent with several ex-
periments,* although experiments give a power closer to
—4. This result also suggests that deterministic dynam-
ics suffice to generate approximate power-law behavior
in the spectral density at high frequencies. !’

To study how the above results depend on the
geometry of the domain, many of the above runs were
repeated in rectangular cells [with the boundary condi-
tions Eq. (4)] and in square periodic domains (for which
boundary conditions are automatically satisfied by use of
periodic representations for the fields). For g =10 and
r=0.5, and for comparable aspect ratios, chaotic states
were found in rectangular cells but not in periodic
domains; in the latter case only time-independent states
consisting of parallel or wavy rolls were attained asymp-
totically. The existence of chaotic states near onset in
rectangular domains is in qualitative agreement with re-
cent cryogenic experiments;'® our simulations predict
that the spatial chaos involves two or more focal singu-
larities at corners that evolve in a complicated way that
will be described elsewhere. The absence of chaos in
periodic domains (=10 and I'=14 for r=0.5 and
g=10) was unexpected, and suggests that lateral walls
play a crucial role in driving mean flows that lead to de-
fect nulceation and chaos.

The above simulations in cylindrical cells are in agree-
ment with experiments on fluids with 6 < 0.7 (see Ref. 1
and Gao and co-workers'®), but do not agree with slight-
ly higher Prandtl number experiments,”3 in which a
transition to chaos was seen very close to the onset of
convection. The latter experiments involved the dynam-
ics of grain boundaries near the lateral walls, with some
local wave numbers being unstable to the zigzag instabil-
ity.> Our simulations for both rectangular and cylindri-
cal geometries show that there are no time-dependent
states for r. <r <r; where r.(I") is the critical value for
onset in a domain of finite aspect ratio I, and where
rs([') is a decreasing function of aspect ratio and also de-
pends on the cell geometry; we estimate r,(7) = 0.1 and
r1(14) =0.03 for cylindrical cells. The absence of
chaotic states very close to onset in our model equations
is not understood, but a possible explanation is that the
vorticity coupling in Egs. (1)-(3) leads to a zig-zag in-
stability that is no longer a long-wavelength instability,
as it is for the Boussinesq equations with nonslip bound-
ary conditions. ¢
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In summary, we have numerically studied the behavior
of model equations that describe the onset of chaos in
large-aspect-ratio convection. These simulations show
that mean flows driven by distortions of the rolls can pro-
duce chaotic states in cylindrical cells that are remark-
ably similar to recent experiments on fluids with Prandtl
number 0.7.
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