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Nuclear Deformation: A Proton-Neutron Effect'?
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It is sho~n within the Hartree-Fock method with the Skyrme force that the quadrupole-quadrupole
neutron-proton interaction gives the leading term in the nuclear deformation energy. The quadrupole-
quadrupole coupling constants are derived and sho~n to agree with those obtained within the simple
harmonic-oscillator model.
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where V1 is the symmetry potential.
When we calculate the low-frequency quadrupole os-

cillations the quadrupole polarizability should be taken
into account. Consequently, the strength coefficients in

Eq. (2) should be renormalized by factors (I+To) and
(I+X~), where Zo and It are the polarizability co-
efficients for isoscalar and isovector quadrupole modes,
respectively. They can be estimated with the random-
phase approximation and the experimental frequencies of
the giant isoscalar and isovector resonances (see Sect. 6

The supposition that the long-range neutron-proton
(n p) i-nteraction is the main reason for the nuclear de-
formation was formulated long ago within the nuclear
shell model. ' In terms of the conventional deformed-
mean-field approach the n pfea-tures are hidden in the
parametrization of the neutron and the proton phenome-
nological one-body potentials. On the other hand, the
self-consistent Hartree-Fock (HF) method with realistic
effective two-body interaction allows for a transparent
analysis of the n-p effects on the nuclear deformation.
The results of such analysis are presented in this Letter.

Let us first discuss the model Hamiltonian with the
quadrupole-quadrupole (Q-Q) interaction

H-Ho+ 2 xoQoQo+ 2 xiQiQi, (1)

where Qp=Q„+Qp and Q~ =Q„—Qp are the single-
particle quadrupole isoscalar and isovector operators, re-
spectively, ice and tc~ are the corresponding coupling con-
stants, and Hp is a spherical single-particle Hamiltonian.
Hamiltonian (1) can be employed in the description of
low-frequency quadrupole vibrations (leading to a possi-
ble quadrupole instability and a stable deformation of
the nuclear shape) or high-frequency quadrupole oscilla-
tions (giant quadrupole resonances). In the latter case
the coupling constants xp and x~ can be estimated" by
use of the harmonic-oscillator Hamiltonian with the fre-
quency cop for Hp. The result is

xi/tco = —0.66. (4)

!n the next step we rearrange the quadrupole part of
Hamiltonian (1) in the following way:

2 xoQoQo+ 2 xiQiQi
1

A
1
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2 tCnnQnQn+ 2 tCppQpQp+ tCnpQnQps

with x,„=xpp so+ x~ and x,p =xp —tc~. Using Eq. (4)
one obtains the ratio of the coupling constants

x'nn /x'np tcpp/ tcnp 0.2~

i.e., the n ppart o-f the Q-Q interaction is about 5 times
larger than the n nor the p--p parts. We can thus con-
clude that the Q„Qp force may indeed be viewed as being
responsible for the development of the nuclear deforma-
tion.

Since the isovector coupling constant tci is positive, the
equilibrium neutron and proton deformations tend to be
similar, i.e., Q„=Qp and Qp» Qi. Hence, by neglect of
the like-particle interaction the readjustment of x„p of
the order of 20% is necessary. On the other hand, the
isovector term is inuch smaller than the isoscalar term,
which justifies the use of the QpQp interaction in all
models which incorporate the assumption of equal neu-
tron and proton deformations.

Let us now discuss the self-consistent mean-field

theory for which the energy of a fermion system has the
form

E =Tr(Tp)+ —,
' Trrp+E, .;„ (7)

where p is the one-body density matrix, T is the kinetic

of Ref. 4), which gives So=1 and X~ = —0.64. Com-
bining this with Eq. (2) and assuming V~ =130 MeV,

(r ) =0.953 I3 fm, one obtains the values of tco and x ~,

tco = —23.3A li MeV fm

x =15 4A I' MeV fm

which gives the mass-independent ratio
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larger than the sum of like-particle potential energies.
Hence the nuclear binding results mainly from the n p-

effective interaction. The quadrupole n p-energy is also
much larger than the n-n and the p-p quadrupole ener-

gies. The monopole energy BE)" increases with iQoi
and all the quadrupole energies decrease with iQoi.
The total deformation energy of the order of a few

megaelectronvolts shown in Fig. I originates from a can-
cellation between the monopole and the quadrupole ener-

gy. Since the EP' term is the component most decreas-
ing with i Qo i, one can say that the nuclear deformation
is caused by the quadrupole n pin-teraction. Similar
conclusions can be drawn for all germanium isotopes
studied here.

Comparing expression of the HF energy, Eq. (II),
with Hamiltonian (l) expressed in terms of the n n, p--p,
and n-p interactions, Eq. (5), one can identify the ener-

gy E(P' with the mean value of Ho and the quadrupole
energies Ej' with the corresponding mean values of the
isospin components of the Q-Q interaction. Based on

such identification the coupling constants can be deter-
mined from the HF results as Ir„„=2E)"/g„, xzz
=2EP'/Qz, Ir„z =EP'/(Q„Q& ), where Q„=(Q„) and

Q~ =(Q1,). The values of Ic„„, Ir~~, and x.„~, calculated at

Qo = —75 fm, have been used to determine the isoscalar
and isovector coupling constants, Iro and Irl. They are
plotted in Fig. 3 together with the harmonic-oscillator
estimates of Eq. (3) as functions of A. The fair agree-

ment between simple estimates (4), which give a good fit
to the quadrupole giant-resonance energies, and the HF
results indicates that the Skyrme force contains the
correct Q-Q component, and thus is able to describe
both the low- and high-energy quadrupole oscillations.

In order to illustrate the cancellation between the
monopole and the quadrupole energies (Fig. 2), we have
plotted in Fig. 3 the stiffness of the monopole energy
defined as Co=2 BEP/Qj. As seen in Fig. 3, the
stiffness Cp is very close in magnitude to ao and has the
opposite sign. Their sum is an order of magnitude small-
er than each of them, and for small deformations it is
close to the stiffness of the deformation energy C=2
xBE/Qj=Co+IrII, which is plotted in Fig. 4 (at QII= —75 fm ) together with the equilibrium deformation
energy bE'" =E(QIl ) —E(Qp =0) calculated at the
prolate minima. It is seen that C and BE'q are strongly
correlated and nicely reflect the shell closures at N =28,
40, and 50.

Recently, a very systematic behavior of the low-energy
nuclear data when plotted against the product N„N~ of
numbers of valence neutron and proton pairs has been
shown. lo The correlation between N„N~ and the quad-
rupole collectivity is usually understood as an indication
that the n pinte-raction is the main factor determining
the nuclear deformation. Moreover, the expression
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FIG. 3. The Q-Q isoscalar and isovector coupling constants
obtained within the HF method (filled and open squares)
shown as functions of the mass number for the germanium iso-

topes, and compared to the harmonic-oscillator estimates of
Eq. (3) (solid and broken lines). The stiffness of the monopole
energy, Co 2 BED'/Q), is also shown (filled circles).

FIG. 4. Hartree-Fock equilibrium deformation energy
hE~=E(QP) —E(QO=O) for prolate minima (squares, scale
to the right) and the stiffness C =2BE/Qf (calculated at
Qo

—75 fm, circles, scale to the left) shown as functions of
the mass number for the germanium isotopes. The product of
numbers of valence proton and neutron pairs N, N~ is plotted in

arbitrary units (solid line). The prolate equilibrium deforma-
tions PI determined from Qilq are also shown in the upper part
of the figure.
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N„N~ is considered as an estimate of the equilibrium de-
formation energy. " This conclusion is qualitatively sup-
ported by the results of Fig. 4, where the product N„N~
plotted against A shows the same pattern as bF. 'q and
the stiffness C. On the other hand, the values of the pro-
late equilibrium deformations PP, determined from the
Hf equilibrium quadrupole moments QIwq, Fig. 4, show
clear maximum at N =40.

In trying to decide which part of the energy, Eq. (11),
makes a given isotope spherical or deformed one should
observe that the monopole stiffness Co reflects the shell
structure in a much stronger way than the isoscalar cou-
pling constant ten (see Fig. 3). The shell fluctuation of C
and bE' should thus be mainly attributed to the fluctua-
tions of Co, while the Q-Q interaction provides a steady
deformation-driving factor. Hence the fact that the
equilibrium deformation energy is correlated with the
product N„N~ is not an immediate consequence of the
dominance of the Q„Q~ term in the quadrupole energy.
The increase of the monopole energy with

~ Qo and its
shell fluctuations constitute more important factors in es-
tablishing such a correlation.

In summary, the importance of the n-p Q-Q interac-
tion in generating the nuclear deformation is supported
by the self-consistent calculations employing the HF
method with the Skyrme interaction. The coupling con-
stants derived from this approach are very close to the
estimates of the harmonic-oscillator model. Strong
correlation between equilibrium deformation energy and
the product of numbers of valence neutron and proton
pairs N„Nt, is found. It is shown, however, that this
correlation should be primarily attributed to the fluctua-
tions of the monopole energy of the nucleus, while the

A

strength of the Q„Q~ interaction does not show any obvi-
ous correlation with the shell structure.
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