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Enhancement Effects of the P-Conserving T-Invariance Violation in Neutron Transmission

V. E. Bunakov ')
Max Pla-nck Institut tur Kernphysik, 6900 Heidelberg, West Germany

(Received 23 March 1988)

The theoretical estimates of the P-conserving T-invariance violation in neutron transmission are reex-
amined. It is shown that the previously omitted factors of dynamical enhancement caused by the T-
nonconserving interaction of the two closely lying resonances might sum up to an overall arnplification of
the eAect by 3-5 orders of magnitude.
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(2)

The P-conserving, T-nonconserving term in the elastic
neutron-nucleus forward-scattering amplitude of the

type o". (k&I)(k I) (where cr, I, and k are the neutron
and nuclear spins and neutron momentum, respectively)
was first mentioned by Baryshevsky', however, attention
was not paid to the fact that since this term is P conserv-

ing it might be larger than the P- and T-nonconserving
one. Direct measurements of this term in polarized-
beam transmission through an oriented-nuclei sample
were suggested by Kabir. It was shown that this term
causes the difference in total cross sections cr and cr

for the transmission of neutrons with opposite polariza-
tions, parallel and antiparallel to the kx I axis,

—o (1)
Thus one can observe in this experiment the effect of P-
conserving T-invariance violation:

~T
0 + 0' 20 tot

where p is approximately given by the ratio of the vari-
ances of the matrix elements of T-nonconserving and T-
invariant potentials.

In the present paper it is demonstrated that a major
enhancement factor was overlooked in this analysis.
Indeed the general expression for AT was found to be
(see, e.g. , Ref. 4) (the angle between k and the target
alignment axis is assumed to be tr/4 while the beam-
polarization and target-orientation parameters are uni-
ties)

/3. T =(4tt/k)lmfT (4)

where

The magnitude of this effect was estimated independent-
ly by Barabanov' and Bunakov and Gudkov to reach in
the vicinity of an isolated compound p resonance its
maximal value
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Here R =1 —S, S being the scattering matrix. The notation &s', l'
I

RJ
I s, l) is used for the matrix elements where l and

l' are the orbital momenta of the initial and final channels, s and s' are the corresponding channel spins, and J is the
compound-nucleus spin.

One might now recollect the general expression obtained by Mahaux and Weidenmiiller for the quantity 6Si„
=S» —S„i arising in the presence of the T-nonconserving part H' in the Hamiltonian. In the case of two isolated (I
«D) resonances (say the p-wave ones) this expression becomes
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Here I,i are the amplitudes of the partial widths for the decay of the ith resonance into the channel a caused by the
strong-interaction potential (they are essentially real for I «D). The amplitudes (yP I

H'I y;) define the additions to
these partial widths caused by the T-noninvariant interaction H'. The quantities H l2

= —/i(2l =(yl I
H'

I y2) define the
mixture of compound resonances 1 and 2 with eigenenergies e; =E; —ir;/2 caused by the perturbation H'. One can
easily see that only the first term of (6) was taken into account in the analysis of Refs. 3 and 4. Consider now the last
term of this expression. From the general considerations of T reversibility, one can assume the matrix elements //l2 to
be purely imaginary:

P l2 =lvT.

Therefore

ImSS „= b[(E——E l) I 2+ (E —E2)rl]/[(E E l )—'+ —,
' rl'] [(E E2)—'+ —,

' rj],
where

b =VT(r,'"r2," r]"r—p') =u7 a1p 2A. p,

(7)

(9)

Substituting now Eqs. (8) and (9) into Eqs. (5) and (4), I get for the contribution to AT from the two near-lying p-wave
resonances

4 [(rl"(-)r2(+)) '"- (r2(-)rl"{+))'"]VT (4z/k ')a l2vT

k' [(E-E )'+r '/4] [(E—E2)'+I )/4] [(E E)'+—r'/4] [(E-E2)'+r)/4] (io)

I have omitted for simplicity the geometrical factors and 6-j symbols of Eq. (5). I;(+ ) stands here for the neutron par-
tial widths of the ith resonance decay into the channels I+ —,

'
.

Usually in the case of low-energy neutrons the cross section cri, i is dominated by the tail of the nearest s-wave reso-
nance:

r r,"r,
k (E —E,) '+r'/4

Therefore

[(E—E, )r2+(E —E,)r, ][(E—E )'+r'/4]
P(E) = bl2

[(E E) +I i/4—] [(E—E2)'+r$/4]r"r,
(i2)

In the vicinity of the ith p-wave resonance P(E =E
displays a resonance behavior and reaches its maxim
value:

(i3)

p„,=p(E ) =p(E2) = (kR)' ', '
. (14)2 (Ep E, ) VT-

D

Between the two p resonances (E =E=
I E l +E2 I /2) a

lower value is obtained:

8al2 I p (E; E) vT-
E

r," r, rr; D

Here D= IEl E2I. Assuming all—the I,"(~) values in

al2 to be of the order of I z we can estimate al2=I)",.
The typical ratio I )",/r," is defined by the ratio of p and s
penetrabilities: r,"/r,"=(kR)'. Normally r; =rk ——r,
=I . Thus the resonance values are

or in the typical case of IE —E, I
=

I
E E~ I, —

P= (kR) VT/D.

Thus we observe in P the typical hindrance factor (kR)
(see Bunakov and Gudkov ) caused by the presence of
k in the T-nonconserving correlation considered and
therefore by the necessity to have p waves in both the in-
itial and final channels. But in the neighborhood of the
p-wave resonance it is compensated by the resonance
enhancement factor IE~ E, /I 2. Whil—e the s-wave
resonance tail dominates in the total cross section [i.e.,
while o, (E~)) o~(E~)], this compensation is incom-
plete since in this case

r," IE, E,l, (E, —E,I'—
8alq I~ (E E, ) vT-

6n I, D2 D

( )2 (E Eg) VT

D2 D
(15)

However, it is easy to see [by just assuming oi,i = oz in-

stead of (11)] that as soon as the contribution of the p
resonance to oi,i equals the o, (E~) background or
exceeds it (the case of "isolated" p resonance), the reso-
nance enhancement factor exactly cancels the hindrance
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factor (kR) so that

Pres v T/D. (17) P= [0'y. (22)

resonances, we can observe in the medium-heavy nuclei

vT = Pv.

In order to estimate v roughly one can recall the usual
expression for the spreading width of a single-particle
resonance I spR =2trv pd (here pd is the density of the
doorway states). In the statistical limit of the black nu-

cleus the single-particle mode is spread over the charac-
teristic distance Dp between the single-particle states and
distributed evenly over all the compound states with

average spacing D:

Dp= v /D.

Therefore v = (Dp/D) 'I and we get

VT

D

ii2
Do D D—=peD D

(20)

Thus it is seen that the quantity (20) really contains
the factor of dynamical enhancement JN well known in
the P-invariance violation for bound states (see Blin-
Stoyle and Shapiros). A fair estimate of this factor
which is confirmed by the experience of reaction theory
for both strong (see, e.g., Mahaux and Weidenmiiller )
and weak (see, e.g., Ref. 6) interactions is

iX = (10' eV'I2)/D'" (21)

The more refined computations'p with surface-8 forces
also confirm this order-of-magnitude estimate.

Therefore for the medium-weight nuclei the dynamical
enhancement factor is = 10 —10 . So if we do not make
special efforts to find the unusually close-lying strong p

When ap starts to dominate in ai„over a broader region,
the resonance maximum in P is also broadened over the
whole region where ap(E) = ai,i(E):

P(E) = (18)
D «etE

The analysis on the same lines of the s d-wave terms
in Eq. (5) shows that they are smaller than the p p
terms considered above by approximately a factor
(kR) '.

Let us now analyze the quantity vT/D in more detail.
First I demonstrate that it contains the so-called dynami-
cal enhancement factor JW (where N is the number of
simple-structure components building up the compound-
resonance wave function). To do this the scaling factor
p can be introduced between the T-noninvariant matrix
element vT and the usual strong-interaction matrix ele-
ment v between the same states yi and iiI2. To be exact,
since the structure of the compound resonances involved

is quite complicated, we can make only statistical esti-
mates of the variances vT and t7:

Since the existing upper limit on p from the detailed-
balance tests and neutron electric dipole moment D„
seems to be not better than 10 3-10 (see, e.g. ,
Herczeg, " but mind that the estimates of D„are strong-
ly model dependent and therefore quite unreliable) any
experimental observation of P with accuracy better than
10 ' will push this limit down. The situation looks even
better if one finds experimentally two closely lying p res-
onances with D(&D. Then the factor D/D in (20) might
improve the situation by at any rate several orders of
magnitude. One should point out that in the case of T-
invariance violation considered one can exploit the D/D
factor more liberally than in the majority of cases of the
P-invariance violation in nuclear reactions where nor-

mally the strong s-resonance contribution to ai, i in the
denominators cancels the effects and does not allow an
increase in it by pushing the mixing s and p resonances
too close to each other (see Bunakov and co-
workers46' ). In the case of P, pushing the two p reso-
nances closer together is prohibited only by the normal
strong-interaction resonance repulsion. Obviously, when
D ~ I one needs to generalize the theory to the case of
overlapping resonances. Work on this lines is being done
presently.

But even without going to the extremes of D (I it
can be seen that the enhancement factors in Eq. (20)
might sum up to a total amplification of =10, thus
making the experimental searches of the resonance P
values perhaps the most sensitive probe of the P-
conserving T-invariance violation.
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