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Acceptable Density Perturbations from Inflation Due to Quantum Gravitational Damping
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Nonperturbative quantum gravitational effects can act as a damping mechanism in primordial
inAation. It is shown that this eff'ect can reduce the value of bp/p to an acceptable value of —10 in

primordial inflation. The same effect reduces the gravitational-wave background by a factor 10,mak-
ing the primordial inflation viable.

PACS numbers: 98.80.Cq, 04.60.+n

One of the major successes of the inflationary model is
the generation of classical "seed" perturbations from
quantum fluctuations. ' 4 Inflation predicts a nearly
scale-invariant spectrum of the form

P, k, r (k)

where k is the comoving wave vector, H is the Hubble
constant during inflation, ts, (k) is the time at which
2nI kI 'a(t~) =H ', and a(t) is the expansion factor.
But, unfortunately, the generic value of the amplitude a
turns out to be too large. To reduce a to acceptable

t

values one has to fine tune the parameters of the in-

flationary potential in an unnatural manner.
In this Letter I will describe how the amplitude a can

be reduced by a large factor (-10 6) by quantum grav-
itational damping. This damping mechanism is relevant
only if the inflation is primordial —i.e., only if the energy
density driving inflation Vo =10' GeV. Normally,
such a primordial inflation would have produced too
much of gravitational-wave perturbations and hence
would have been ruled out. s However, the same damp-
ing mechanism reduces the gravitational-wave perturba-
tions as well, thereby making the model viable.

To see how this damping works, recall the origin of
(1) in the standard scenario (I will follow the analysis of
Brandenberger. ) The k dependence arises essentially
from the Fourier transform of the correlation (Green's)
function:

=const x [a (t ) I k I ] (4)

We are interested in bp(k, t) at the time t =t+ (k), which
is the epoch at which mode k "leaves the horizon. " At
t =t~, a =a(t~) = (k/2+H) and hence we get

[8p(k, t+ (k) )] =const x k (5)

[Bp(k, )]t'- fey(k, t)]'=„d' ex'"'"(y(x, t)y(0, t)) =

For the scales which are of interest, G(x, t) can be ade-

quately approximated by the free-field Green's function
[4n a (t) I

x I ] ' so that

[8p(k, t)] =constx„d xe '"'*[a (t) IxI ] ' (3)

d'xe '"'G(x t)

The above analysis treats gravity as classical. I now

ask, "How does quantum gravity modify the above re-
sult?" Since we do not have a quantum theory of gravi-
ty, such a question has no unambiguous answer. Howev-

er, one can draw certain general conclusions.
The central quantity in the above analysis was the

Green's function G (x,y;g;k ) evaluated in a given classi-
cal metric g;k. If quantum fluctuations of gravity are
taken into account, then one has to average G(x,y;g;k)
over all possible geometries. An exact calculation of
such an average is, again, intractable. However, as a
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first approximation, one can average G(x,y;g;k) over all

geometries which are conformally related to g t, . Such a
calculation can be performed (see Padmanabhans). The
result replaces the Fourier transform of the Green's
function,

f=exp( ——,
' LpH) =exp( ——,

'
trJ32e ), (8)

where I have taken the energy density Vo driving the
inflation as Vjt" =eMp where Mp (=10' GeV) is the
Planck mass. Conventional analysis without fine tuning
gives an amplitude a in the range of 1 to 50 when the
fluctuations reenter the "horizon. " Observationally one
would like this number to be about 10 to 10 . Thus
we need a factor f in the range 10 " to 10 6. This is

easily achieved for e in the range 1.8 to 2.2. Note that
the only dimensionless parameter in the theory, e, is of
order unity and produces the correct hp/p. It should also
be stressed that the scale-invariant nature of (bp/p)
~ak is preserved by the correction term, because, at
t =t», the exponential factor is independent of k.

We also see from (8) that the damping factor is

significant only for "primordial inflation, " i.e., for Vj

by the averaged value

(G(k)) =[2~k~a (t)1 'exp[ —Lp/2trk 'a(t)], (7)

where L( =4trG/3. [This result can be obtained by re-
petition of the analysis leading to Eq. (64) of Ref. 8, in

the context of Friedmann-Robertson-Walker universes. ]
The form of (7) implies that proper wavelengths smaller
than the Planek length are exponentially damped

Even though (7) is derived by an approximate model
for quantum gravity, it is very likely to reflect a generic
feature of a full theory of quantum gravity. In support
of this view, let me give three reasons: (i) Because of
(7), modes with proper wavelengths far smaller than Lp
have vanishing correlation. Such a lack of coherence9 is

to be expected because of random Auctuations of
geometry at small scales. (ii) Equation (7) indicates
that gravity acts as an "infrared regulator. " Several
model calculations support this view. ' " DeWitt, for
example, 'o obtains exactly the same result as (7) by a
partial summation of Feynman diagrams. This shows

that (7) is not overly model dependent. (iii) The finite-
ness of string theories of gravity is essentially due to a
natural small-distance cutoff at =Lp. Thus it is reason-
able to expect a result like (7) to arise from string mod-
els. ' Because of these reasons, I expect quantum gravi-
tational corrections to be generically of the type indicat-
ed by (7).

It is now easy to compute the modified bp(k, t»).
Note that, at t=t», 2trk 'a(t») =H '. Thus our
datnping term in (7) reduces the original value of bp/p

by the factor

—Mp. (For grand-unified-theory inflation, e= 10 and

f 1
——10 s. ) Usually such an inflation produces too

many background gravitons, and hence will lead to unac-
ceptably large temperature fluctuations in the cosmic mi-

crowave background radiation. However, for e-l, the
gravitational-wave modes are also damped by the same
factor. To see this, recall that the characteristic Auctua-
tions in the gravitational-wave modes are given by [see,
e.g., Eq. (12) of Abbott and Harari' ]

3 f+

Ah (k)=, —,
' „d xe '"'"(h; (x, t)h;, (O, t))

2tr ' '"
k'

, —,
' e(k, t), (9)

2K ' '

where 0 (k, t ) is the spatial Fourier transform of the
Green's function for a massless, spin-two graviton in the
Friedmann-Robertson-Walker universe. Averaging over
all conformally related Friedmann-Robertson-Walker
models will now replace Q(k) by Q(k)f at t =t». Since

f=10 4 to 10 6 we easily bypass the constraint on pri-
mordial inAation.

Let me summarize the basic idea and the results.
Quantum gravity damps the propagation of modes with

proper wavelengths smaller than Lp. (I have given ar-
guments to support this point of view; in a simple quan-
tum gravity model this feature can be explicitly demon-
strated. ) This damping mechanism reduces the ampli-
tude of all (zero mass) fluctuations by a factor f given in

(7). Since the factor is exponential, large reduction in

the amplitude of Auctuations is possible even if the di-
mensionless constants are kept to be of order unity. It
seems natural to consider a model in which the only scale
is Mp and all dimensionless parameters are set to order
unity.
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