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Singularities and Catastrophes in the Dynamics of One-Dimensional Systems
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Dynamical correlation functions at low temperature for one-dimensional systems that involve the de-
cay of a single elementary excitation into three others show logarithmic singularities at the frequency of
the original excitation, as well as discontinuities that become sharper as the temperature is lowered. The
discontinuities are the result of an elementary catastrophe that occurs as the phase space available for
the decay varies with frequency. They should be observable, for instance, as dramatic changes in the
out-of-plane spin-wave linewidth in CsNiF3 as a function of temperature and wave vector.

PACS numbers: 75.30.Ds, 75.40.Gb, 75.50.Rr

The appearance of (o0 — wg) /% singularities in the where wZ2® is the second moment. y¢(w) is the spin-
frequency response of one-dimensional systems, that current damping rate, and is the central object of the
arise when one elementary excitation decays into two theory to be presented. For the Hamiltonian
others, is a well-known phenomenon. It will be shown
here that there are characteristic |In(w—wo)| diver- H=—J%;S;-Si+1+DX,;(S7)?, ()

gences when an excitation decays into three others.
Furthermore, there is a discontinuity in the low-
temperature spectral density associated with these pro-
cesses, as a region of phase space becomes inaccessible 0w} =021 —xa/r)(1 —a), (3)
for decay. The contribution of this region is nearly con-

stant until the frequency is reached at which it becomes where w, =S[(Jo—J,)(Jo—J,+2D)1'2, J,=2J cosqa,

which is appropriate to CsNiF3, the second moment is,
for the classical system, at low temperature*

inaccessible, even though its phase-space volume is ap- r=[D/7(D/J+2)1"2 and « is the inverse coherence
proaching zero. This is an example of an elementary ca- length k7/2JS?a for the spin component perpendicular
tastrophe,' in the mathematic sense. Three-excitation to the hard z axis. a is the lattice parameter, henceforth
decay processes will occur generically, but to be easily set equal to 1.
observable the two-excitation process must be absent, as The coherence length of the classical system diverges
otherwise it may be expected to be dominant. One sys- as T— 0, leading to the existence of well-defined excita-
tem for which these processes are distinguishable is the tions, at the frequency wg,, and the vanishing of y§(w).
easy-plane ferromagnet. In this case, the linewidth for As a consequence it is possible to obtain the leading
the out-of-plane fluctuation is entirely due to three- terms in a temperature expansion of y§(w) exactly from
spin-wave decay. For concreteness, this system will be spin-wave theory. The quantum corrections in CsNiF3,
used for this discussion. One remarkable consequence of that result in a finite linewidth of the excitations at
the existence of the catastrophe is that there would be a T =0, are small,* and do not invalidate the theory for
sudden, large drop in the linewidth as the temperature the description of that material. Furthermore, the singu-
was raised, followed by a further increase. larity and catastrophe are present for the quantum case
The dynamical correlation function of any spin system as well, since they are produced by a density of states,
can be represented, with standard techniques, in the and it does not matter whether the matrix elements are
form? calculated classically or not.
(% it/ car.y ca For the in-plane function, y; () is due to two spin-
S(q,cu):j; e (S§(0)S g)dt wave decay processes, and l;]as been discussed else-
=85S Mo~ i /lo+ @B ™!, (1) v\l/lhcrée.5 For the out-of-plane function it can be shown
that
2
v (@) =Z9D2 5 (20500 — w1+ 02+ 09) + 50+ 01 — 02— 03)]
8S 919293
+ ;‘ (F1_23)2[6(w —w] —wz—co3) +6(w+w1 +w2+w3)]}
x[(1 —cosq,+D)(1 —cosq,+D)(1 —cosq3+ D)1 "'6(g—q1—q2—q3), (4)
where D=D/J.

The vertex functions I' ¥ are trigonometric functions of the arguments that can be obtained from the equations of
motion and do not have any bearing on my conclusion. I will omit an explicit expression for them for brevity here.
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where a =8%w/8q?%|, and f= % 8°w/dq>|,. The diver-
gence is due to the vanishing of the linear term in A and
p, since dw/9q | -4 = —0w/dq|,. As long as a=0, the
singularity as Sw— 0 will be determined by the term
apA in (5), and may easily be seen to be logarithmic.

S , - The higher-order term has an important effect at a =0
e // . and as one moves away from the singularity, for any g,
5 " and leads to a catastrophe occurring in the evaluation of
T T the integral.

il

I consider a small region |A| <gqq, |p| <go, o<,
about the point in phase space at which the singularity
occurs. Let pA=x, p+A=y. Then this domain maps
(twice) onto the region shown in Fig. 1, and the locus of
\ points for which the & function vanishes is given by the
hyperbola in Fig. 1. The other terms in the integral in

X=(Q-Q2)%(Q-03) (4) can all be evaluated at A=p=0, and so to a good
FIG. 1. The image of a small square domain about the point first approximation, the frequency dependence of ¥;(w)
q1=q, §2=q, g3 =q under the transformation given in the text. is determined by
The hyperbolas are the locus of points for which the argument
of the & function vanishes, for different value of dw. The pa- 2 2
rabola y2=4x is a locus of singularities of the density of stat‘::s. f5(5w+apA+ﬂ(pA tp A))
Swi > Sw. =fdxdy 6(5w+ax +ﬁxy) ] (6)
(y2—4x) 172
A general three-excitation decay process will contain
the four-frequency & functions shown. To evaluate the Doing the integral over y, we obtain for the integral in
spin-wave damping at low temperature, one would naive- 6)

ly expect to calculate ¥j(w,). However, the second §
function leads to an integral that is logarithmically x} dx
divergent at wg, so that to calculate the damping, one ZI:L [Gotax):—ap7x 17" @)
must use the fact that the resonance is shifted because of
the temperature dependence of w%‘z. One then obtains a
finite damping. The existence of this divergence does not
depend upon any particular detail of the dispersion rela-
tion, although at the g value where 82w,/dq>=0, the
divergence is even stronger.

The region of phase space leading to the divergence is
the region near ¢, = —gq, g2=q1, 43 =4, and corresponds
to a process in which the existing spin wave absorbs one
of nearly opposite momentum and decays into two of
nearly the same momentum. In this region, with g
=—q—p—A q2=q9%p, g3=¢+A, 0w=0,td0, we
find that the argument of the & function becomes

where x; and xj are the beginnings and ends of intervals
corresponding to the intersection of the hyperbola
dw+ax+pxy =0 with the boundaries of the domain
shown in Fig. 1. Those intersections corresponding to
the parabola y>=4x [p=A in the original variables] are
singularities in the integral in (7). As I have drawn it,
there are three such points, corresponding to the three
roots xy,x2,x3 of the polynomial (6w+ax)?—4B%x°>,
but one can see that as Sw is increased, a value is
reached at which two of the roots x, and x3 coalesce to a
single root, and then the entire branch no longer contrib-
utes to the integral. It is easy to see that the contribu-

Sw+apA+B(p2a+A2p), (5) | tion. of the' branch is finite up to value of w at which it
vanishes, since
. *3 dx 1 *3 dx b1
legn)u 2 [x—x)(x —x3)(x3—x)]1172 ()cz—x])’/z‘ﬁ‘2 [(x—x)Ge3—x)12 (xy—x) V2 ®)
There is, therefore, a discontinuity in y;(w), as well as |

a singularity. The singular contribution to y,(w) is D, for small values of D.
shown in Fig. 2, as a function of dw/wy, calculated nu- It is clear from the above discussion that the phe-
merically directly from Eq. (4), for a value of D=0.21, nomenon [ am discussing is quite generally present in 1D
appropriate to CsNiFs;. The discontinuity occurs at systems. It should be observable in CsNiFs.” In Fig. 3
—8w=a’/278% and is of magnitude 7n+/3/a. There is the out-of-plane linewidth is given as a function of wave
also a discontinuity at the value ¢ =0.5x, since « is not vector in CsNiF3. This is calculated by the evaluation of
quite zero there, but it is too close to o =0 to appear in ve(@) at @ =(w}?)'"?, the shifted spin-wave frequency,
the graph. The position of the zero of a is insensitive to for several temperatures corresponding to the values of
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FIG. 2. The singular part of yi(w) as a function of w/w,,
for several g values. The position of the discontinuity is deter-
mined by §w=a>/27b2.

xa shown. The temperature dependence of the linewidth
is then T2InT. For a given temperature, as g increases
from zero, a decreases and eventually the criterion
|sw| = | «?/278%| is exceeded, leading to the drop in
the linewidth. As the temperature is lowered, dw be-
comes smaller, and ¢ must be closer to the value of ap-
proximately 0.5z at which a vanishes. The discontinuity
also becomes larger. At the value xa =0.1, which corre-
sponds to about 8 K in CsNiF3;, the linewidth is 0.13
meV (full width at half maximum), before it drops at
q=0.37/a, which is within the capability of existing
spectrometers to resolve, although existing measure-
ments have not done so.””® By way of comparison, the
full width for the in-plane fluctuations, at this wave
vector, is accurately given by the isotropic value®
4(xa)JS sing, and is considerably larger, 0.61 meV. One
would expect the linewidths for the in-plane and out-of-
plane fluctuations to become comparable at the cross-
over temperature, which corresponds to xa =(2D)'2/J
=0.65, although the present results are restricted to
temperatures considerably below that, and cannot simply
be extrapolated. The observed discontinuity will be
smoothed by finite-temperature corrections to (4), pri-
marily by replacement of the § function with a Lorentzi-
an of width proportional to k7. This should lead to the
drop occurring over a region of wave vector of width of
order x, which would still leave it easily observable.
Given the small ratio of interchain exchange to intra-
chain exchange, J'/J=10 "2, the small dispersion in the
spin-wave frequency with the out-of-chain wave vector
will produce a negligible rounding compared with the
finite-temperature correction, at temperatures at which
the linewidth will be large enough to be measurable. I
note that the quantum mechanical corrections to Eq. (4)
do not affect the existence of, or the criterion for the lo-
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FIG. 3. The out-of-plane linewidth as a function of temper-
ature (ka =kT/2JS?) and wave vector in a classical easy-plane
ferromagnet with a value of D/J=0.21, corresponding to
CsNiF3. The points are calculated from the theory. The solid
line is a guide to the eye.

cation in phase space of, the catastrophe, although they
can affect the magnitude of the observed discontinuity.

In conclusion, in one-dimensional systems that show
well-defined excitations at low temperature, and for
which a weak-coupling perturbation theory is valid, one
can expect to find interesting anomalies in the physical
response that correspond to the existence of a divergence
and a catastrophe in the three excitation decay processes.
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