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Singularities and Catastrophes in the Dynamics of One-Dimensional Systems
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Dynamical correlation functions at low temperature for one-dimensional systems that involve the de-

cay of a single elementary excitation into three others show logarithmic singularities at the frequency of
the original excitation, as well as discontinuities that become sharper as the temperature is lowered. The
discontinuities are the result of an elementary catastrophe that occurs as the phase space available for
the decay varies with frequency. They should be observable, for instance, as dramatic changes in the
out-of-plane spin-wave linewidth in CsNiF3 as a function of temperature and wave vector.

PACS numbers: 75.30.Ds, 75.40.Gb, 75.50.Rr

The appearance of (to —coo) 't singularities in the

frequency response of one-dimensional systems, that
arise when one elementary excitation decays into two

others, is a well-known phenomenon. It will be shown

here that there are characteristic ~1n(to —toll) ~
diver-

gences when an excitation decays into three others.
Furthermore, there is a discontinuity in the low-

temperature spectral density associated with these pro-

cesses, as a region of phase space becomes inaccessible
for decay. The contribution of this region is nearly con-
stant until the frequency is reached at which it beco
inaccessible, even though its phase-space volume is

proaching zero. This is an example of an elementary
tastrophe, ' in the mathematic sense. Three-excitat
decay processes will occur generically, but to be ea
observable the two-excitation process must be absent,
otherwise it may be expected to be dominant. One s

tern for which these processes are distinguishable is

easy-plane ferromagnet. In this case, the linewidth

the out-of-plane fluctuation is entirely due to thr
spin-wave decay. For concreteness, this system will

used for this discussion. One remarkable consequenc
the existence of the catastrophe is that there would b

sudden, large drop in the linewidth as the temperat
was raised, followed by a further increase.

The dynamical correlation function of any spin syst
can be represented, with standard techniques, in

form

where co~2' is the second moment. yv(co) is the spin-

current damping rate, and is the central object of the
theory to be presented. For the Hamiltonian

H = -Jg, S, S, +, +Dg;(S;)', (2)

which is appropriate to CsNiF3, the second moment is,
for the classical system, at low temperature

toq' =toq2(1 tea/r)(1 x'a), (3)

mes where toq =S[(Jp—Jv)(Jp —Jq+2D)] 't, Jz =2Jcosqa,
ap- r=[D/J(D/J+2)]'t, and K is the inverse coherence
ca- length kT/2JS a for the spin component perpendicular
ion to the hard z axis. a is the lattice parameter, henceforth
sily set equal to l.

as The coherence length of the classical system diverges
ys- as T 0, leading to the existence of well-defined excita-
the tions, at the frequency tov, and the vanishing of yv'(to)

for As a consequence it is possible to obtain the leading
ee- terms in a temperature expansion of yv(to) exactly from

be spin-wave theory. The quantum corrections in CsNiF3,
e of that result in a finite linewidth of the excitations at
e a T=O, are small, and do not invalidate the theory for
ure the description of that material. Furthermore, the singu-

larity and catastrophe are present for the quantum case
em as well, since they are produced by a density of states,
the and it does not matter whether the matrix elements are

calculated classically or not.
For the in-plane function, y~ (to) is due to two spin-

wave decay processes, and has been discussed else-

(I) where. For the out-of-plane function it can be shown

S(q, to) =—„e'"'(S;(t )S' ,)dt-
=i(Sg S' q) [to —to,"/[-co+ y~ (co) ]]

fq (to) ='2 g [(I 123) [ts(to tol+ to2+ to3) + tl(to+ tol to2 to3)]
tt(kT) 2

+ 2

+ (I 123) [~( 1 2 3)+~(to+ 1+ to2+ to3)]]

x [(1 —cosq 1 +D ) (I —cosq 2+ D ) (1 —cosq 3+D ) ] ti (q —
q 1

—
q 2

—
q 3), (4)

where D =D/J.
The vertex functions I —are trigonometric functions of the arguments that can be obtained from the equations of

mpt pn and dp npf have any bearing pn my cpnclusion. I will omit an exp»ci«xp«ssipn fo«hem for
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wh«e a=& co/clq Iv and p= 2 cl co/Bq !v. The diver-
gence is due to the vanishing of the linear term in d, and
p, since rico/eIq I

—
q
= —|leo/|Iq Iq. As long as a&0, the

singularity as 6co 0 will be determined by the term
apA in (5), and may easily be seen to be logarithmic.
The higher-order term has an important eA'ect at a=0
and as one moves away from the singularity, for any q,
and leads to a catastrophe occurring in the evaluation of
the integral.

I consider a small region I 6 I (qo, I p I
(qo, qp«7t,

about the point in phase space at which the singularity
occurs. Let pa=x, p+A y. Then this domain maps
(twice) onto the region shown in Fig. 1, and the locus of
points for which the 8 function vanishes is given by the
hyperbola in Fig. 1. The other terms in the integral in
(4) can all be evaluated at d, =p=0, and so to a good
first approximation, the frequency dependence of y~(co)
is determined by

C3
I

+

I

II

I

X= C Q-Q2 3 + C Q-Q3 )

FIG. 1. The image of a small square domain about the point

ql =q, q2=q, q3 =q under the transformation given in the text.
The hyperbolas are the locus of points for which the argument
of the 8 function vanishes, for diA'erent value of 6co. The pa-
rabola y =4x is a locus of singularities of the density of states.
hMI ) BC02.

S(ao+ apa+ p(pa'+ p'a) )
8(&co+ax+ pxy )

(y
2 4x) I/2

A general three-excitation decay process will contain
the four-frequency 8 functions shown. To evaluate the
spin-wave damping at low temperature, one would naive-

ly expect to calculate yv(co~). However, the second 8
function leads to an integral that is logarithmically
divergent at co&, so that to calculate the damping, one
must use the fact that the resonance is shifted because of
the temper
finite damp
depend upo
tion, altho
divergence

The regi
the region
to a proces
of nearly
nearly the

c'
find that th

Doing the integral over y, we obtain for the integral in

(6)

~ x) X
""i [(b'co+ax)' —4p'x'] '" ' (7)

Bco+apA+ p(p h, +4 p),

r X3
lim

2,zature dePendence of coo . One then obtams a where x' and x) are the beginnings and ends of intervals
ing. The existence of this divergence does not corresponding to the intersection of the hyperbola
n anY Particular detail of the disPersion rela- gco+ax+pxy =0 with the boundaries of the domain

shown in Fig. 1. Those intersections corresponding to
is even stronger. the parabo la y' =4x [p =6 in the original variables] are
on of phase sPace leading to the divergence is singularities in the integral in (7). As I have drawn it,

there are three such points corresponding to the three
s in which the existing spin wave absorbs one ioots x x x of the polynomial (p~+ ax) 4p2 3

opposite momentum and decays mto two of but one can see that as pco is increased, a value is
eg'o" w't q' reached at which two of the roots x2 and x3 coalesce to a

q2 =q+ p q3 =q+~ ~ ~v+~~ we single root, and then the entire branch no longer contrib-
e argument of the 8 function becom~ utes to the integral. It is easy to see that the contribu-

(5) tion of the branch is finite up to value of 8co at which it
vanishes, since

dx j +X3 dx E
[( —,)( — )( —x)]'/ (x —x )' ""' [(x —x )(x x)]' (x x )

There is, therefore, a discontinuity in zv (co), as well as
a singularity. The singular contribution to zv(co) is
shown in Fig. 2, as a function of 6co/co&, calculated nu-
merically directly from Eq. (4), for a value of D =0.21,
appropriate to CsNiF3. The discontinuity occurs at
—Sco=a /27P and is of magnitude xJ3/a. There is
also a discontinuity at the value q =0.5~, since a is not
quite zero there, but it is too close to 8m =0 to appear in
the graph. The position of the zero of a is insensitive to

!
D, for small values of D.

It is clear from the above discussion that the phe-
nomenon I am discussing is quite generally present in 1D
systems. It should be observable in CsNiF3. In Fig. 3
the out-of-plane linewidth is given as a function of wave
vector in CsNiF3. This is calculated by the evaluation of
yz(co) at co = (co&') ', the shifted spin-wave frequency,
for several temperatures corresponding to the values of
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FIG. 2. The singular part of yv(cu) as a function of to/tov,

for several q values. The position of the discontinuity is deter-
mined by 8t0 =a '/27b .

ica shown. The temperature dependence of the linewidth
is then T lnT. For a given temperature, as q increases
from zero, a decreases and eventually the criterion

~
Sro

~

)
~
a /27P

~
is exceeded, leading to the drop in

the linewidth. As the temperature is lowered, Ro be-
comes smaller, and q must be closer to the value of ap-
proximately 0.5tr at which a vanishes. The discontinuity
also becomes larger. At the value tca =0.1, which corre-
sponds to about 8 K in CsNiF3, the linewidth is 0.13
meV (full width at half maximum), before it drops at

q =0.3tr/a, which is within the capability of existing
spectrometers to resolve, although existing measure-
ments have not done so. By way of comparison, the
full width for the in-plane fluctuations, at this wave
vector, is accurately given by the isotropic values

4(ica) JSsinq, and is considerably larger, 0.61 meV. One
would expect the linewidths for the in-plane and out-of-
plane fluctuations to become comparable at the cross-
over temperature, which corresponds to ica =(2D)'/2/J
=0.65, although the present results are restricted to
temperatures considerably below that, and cannot simply
be extrapolated. The observed discontinuity will be
smoothed by finite-temperature corrections to (4), pri-
marily by replacement of the 6 function with a Lorentzi-
an of width proportional to kT. This should lead to the
drop occurring over a region of wave vector of width of
order tc, which would still leave it easily observable.
Given the small ratio of interchain exchange to intra-
chain exchange, J'/J=10, the small dispersion in the
spin-wave frequency with the out-of-chain wave vector
will produce a negligible rounding compared with the
finite-temperature correction, at temperatures at which
the linewidth will be large enough to be measurable. I
note that the quantum mechanical corrections to Eq. (4)
do not alfect the existence of, or the criterion for the lo-

FIG. 3. The out-of-plane linewidth as a function of temper-
ature (tea =kT/2JS ) and wave vector in a classical easy-plane
ferromagnet with a value of D/J =0.21, corresponding to
CsNiF3. The points are calculated from the theory. The solid
line is a guide to the eye.

cation in phase space of, the catastrophe, although they
can affect the magnitude of the observed discontinuity.

In conclusion, in one-dimensional systems that show
well-defined excitations at low temperature, and for
which a weak-coupling perturbation theory is valid, one
can expect to find interesting anomalies in the physical
response that correspond to the existence of a divergence
and a catastrophe in the three excitation decay processes.
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