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Unusual Transport Effects in Anisotropic Superconductors
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We show that scattering processes in anisotropic superconductors have some unexpected asymmetries
when the normal-state phase shift is neither small nor resonant. The scattering rate is not symmetric
about the Fermi surface, which gives rise to large thermoelectric eff'ects. For states with gaps that have
nontrivial phase variations over the Fermi surface, certain components of transport coefficient tensors
can be finite even though they vanish in the normal state.
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In an attempt to understand measurements of trans-

port properties of superconducting heavy-electron sys-

tems, ' a number of authors have considered scattering of
quasiparticles by nonmagnetic impurities in anisotropic
superconductors. These studies show that, in marked
contrast to what is found for a BCS superconductor, the
mean free path behaves in very different ways depending
on the phase shift of the impurity. For small phase
shifts, the scattering rate in superconducting states with
nodes in the energy gap is proportional to a power of the
temperature at temperatures well below the supercon-
ducting transition temperature, T„while for resonant
scattering (61v =+ tt/2) the temperature dependence is

much weaker. This effect was first pointed out by Peth-
ick and Dines, and detailed calculations that take into
account pair breaking were performed by Hirschfeld,
Vollhardt, and Wolfie and others. The experimental
data appear to indicate that the phase shift is probably
close to tt/2, but at present it is not possible to make pre-
cise statements because the nature of the superconduct-
ing state is not well understood.

In this Letter we discuss two classes of effects which
can occur when the normal-state phase shift is neither
small nor completely resonant. The first, a quasipar-
ticle-quasihole asymmetry on energy scales of order

t'p p(E) =u~ti~(E)up+up ti2(E)t, ,+v,'t2i(E)up+v

Here t;, , i =1,2, is the scattering amplitude in normal-
state quasiparticle-quasihole space, with i =1 referring to
quasiparticles and i =2 to quasiholes, u~ and t, ~ are the
usual coherence factors, and for simplicity we have
suppressed spin indices. The scattering amplitude is

especially simple for states with order parameters which
are odd under the replacement of p by —

p, or under
reflection of p in some plane. All the anisotropic states
we shall consider in detail in this Letter, namely the axi-
al (ABM) and polar p-wave states and the d-wave state
with an order parameter proportional to sin0cos0e'~, fall
into these classes. These states are often referred to as
unconventional superconductors, in that the crystal sym-
metry of the order parameter is lower than that of the

normal metal. Here 9 and p are the polar coordinates of
p. One finds tip =t2i =0 and

where

1 tan6~
ttlv(0) 1

—i tanB~g(E) ' (2)

dna &o Eg(E) =— '
d(pz" 4z " ~o E2 —E2

P

(3)

lV(0) is the density of states of one spin in the normal
state and Btv is the normal-state phase shift. Eo is a

kiiT„gives rise to an anomalously large thermoelectric
effect. The second, associated with order parameters
with a nontrivial phase variation over the Fermi surface,
as, for example, in the Anderson-Brinkman-Morel p-
wave state, produces angular asymmetries in the scatter-
ing cross section. As a consequence, some components of
transport coefficients that vanish in the normal state are
finite in the superconducting state. Which particular
transport coefficients acquire infinite values depends on
the angular symmetry of the order parameter, and there-
fore experimental observation of them would provide a
way of distinguishing among different superconducting
states. The effects discussed here might also prove useful
in elucidating the nature of the superconducting states in

the high-T, materials.
To show how the effects arise, we consider scattering

of quasiparticles in a superconductor by an impurity.
For simplicity we assume that the scattering is only s
wave, and that the concentration of impurities is suf-
ficiently low that pair-breaking effects may be ignored.
The amplitude for a single impurity to scatter a quasi-
particle from a state with momentum p to one with
momentum p' is obtained by performance of a Bogo-
liubov transformation on the scattering amplitude in the
superconductor for normal-state quasiparticles and
quasiholes, and is given by

p t22(E) vt, .
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cutoff energy, h«Ep«EF, with h, the maximum value
of the gap as a function of angle on the Fermi surface
and EF the Fermi energy. The quantity E~ = (g~
+ 18,~1 ) 't is the quasiparticle energy in the supercon-
ductor, (~ is the normal-state quasiparticle energy, and

A~ is the gap as a function of direction on the Fermi sur-
face. For simplicity we consider only unitary states, for
which the gap is independent of spin.

The observation which is central to all the effects we

shall discuss below is that g(E) has both a real part, pro-
portional to the density of states in the superconductor,
which is an even function of E, and an imaginary part
which is an odd function of E. The latter vanishes for
energies in excess of 6, but is finite below h. For small

8~, tll(E) approaches —t22(E), while for BN= ~ z/2,
t1 1(E) is equal to t22(E). On the other hand, for other

values of the phase shift the relationship between t i|(E)
and t22(E) is more complicated, since the real parts of
the denominators in t i i and t22 [Eq. (2)] are I + tan6~
x Img(E) and 1 —tan6~ Img(E), respectively. Physical-

ly, the difference is due to the fact that t i 1 (E) is a parti-
cle amplitude, while t22(E) is a hole amplitude, and the
basic interaction between an impurity and a particle is

the negative of that between the impurity and a hole.
The difference between the amplitudes reflects the physi-
cal difference between attractive interactions, which tend
to form bound states, and repulsive ones, which do not.
In the case of scattering processes, this difference is ap-
parent only if the potential is sufficiently strong that the
Born approximation is inadequate.

The squared modulus of the scattering amplitude
summed over final spin states and averaged over initial

spin states is given by

( I t~ ~ I
'& = 2'

I ttv I

'ala�(I

+ &i &~/E+~ )+b(&r/Er+&~/E~ )+Rel -,
' c tr(ai a~/E+~ ll,

where

(4)

a =(I t » I
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and c =tiit22/I tiv I and
I tiv I =(sinbiv)/zN(0). For

the anisotropic states that we consider in this paper,
which all have gaps that are odd under the parity trans-
formation or a reflection, the relaxation time is given

simply by

gp N, (Ep)a+ 5
rp gatv Er N(0)

where N, (E&) is the density of quasiparticle states in the
superconductor, and gatv is the normal-state relaxation
time.

A surprising feature of the relaxation time (5) is that
it contains a term proportional to gz, and therefore it is
not symmetric about the Fermi surface. For energies
less than A, Img is comparable to unity, and therefore b

typically has a magnitude sin(28~). The existence of
such asymmetries has previously been pointed out by
Pethick and Dines, ' and by Monien et a/. who took
them into account in calculations of the ultrasonic at-
tenuation. In metals there are, of course, other asym-
metries of the relaxation time about the Fermi surface,
due to variations of the normal-state density of states
and the matrix elements, but these are generally on an

energy scale EF. In superconductors the effects of the
latter asymmetries are generally small, and we have im-

plicitly neglected them in the calculation described here.
The asymmetry about the Fermi surface has a number

of consequences, the first of which is that in the calcula-
tion of transport coefficients it is generally necessary to
solve a pair of coupled equations for the parts of the dis-
tribution function even and odd in (~. "This is in con-
trast to what is the case for a normal Fermi liquid at low
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FIG. 1. Thermoelectric coefficient I„„asa function of tem-
perature for the d-wave state described in the text.

temperatures, where the collision integral does not mix
odd and even terms, and therefore the equations for the
odd and even parts of the distribution function are un-
coupled. A second, and more interesting, effect is that
there are large thermoelectric coefficients. The applica-
tion of a temperature gradient to a superconductor drives
a normal current, given by j„'= L;JV, T. Th—e coef-
ficient L;, vanishes at T=O, because the values of gi, for
which there are thermally excited quasiparticles vanish
as T 0, and at T=T, because the asymmetries are
present only for energies less than the maximum value of
the gap. The Boltzmann equation may be solved exactly
for this problem, " and in Fig. 1, we show results for L„,
in the d-wave state discussed above, where the x axis is
perpendicular to the symmetry axis of the state. The
effect changes sign under reversal of the sign of 6~. In
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these calculations we used a simplified expression for the

gap first suggested by Wolfle and Koch. ' Even for phase
shifts of about 0.9z/2, a value deduced from specific-heat
measurements for UBeii, the coeflicient L can be as
large as 0.1 ajv/e, where cr~ = —', e 1V(0)U(re is the
normal-state conductivity. In ordinary isotropic super-
conductors L is typically of order (rJtv/e)(T, /TF). Since
T,/TF for ordinary superconductors is typically of order
10 -10, one would therefore expect the thermoelec-
tric coefficient for heavy-electron compounds to be
—10'-10 times larger than that for ordinary supercon-
ductors, for materials with comparable values of the
normal-state electrical conductivity. '

Thermoelectric eff'ects in superconductors cannot be
detected in the same way as in normal metals, because
the supercurrent shorts out any potential diff'erences that
develop, and therefore new techniques were developed
for superconductors. ' Experiments have been per-
formed with use of a number of these, but the theoretical
interpretation of the results is not always clear. Mea-
surement of the charge imbalance induced by a tempera-
ture gradient close to the boundary of a superconductor
appears to be the cleanest of these experiments, and such
measurements for Al give results in good agreement with
the theoretical predictions. ' It would be of great in-

terest to perform such experiments for heavy-fermion su-

perconductors, but fabrication of the necessary samples
and contacts is a challenging problem.

Another efl'ect of the asymmetry of the scattering rate
about the Fermi surface is that modulation of the tem-
perature in a spatially homogeneous but time-dependent

way will give rise to charge-imbalance voltage between
the normal and superconducting components, an effect
which can in principle be measured by tunneling tech-
niques. We have not made detailed calculations of this
eff'ect, but we expect the voltage to be of order BV
-n»rtv ka6T/e, where 6T is the amplitude of the temper-
ature modulation and co its angular frequency. Rough
estimates suggest that the eff'ect will be difficult to detect
experimentally.

Another type of asymmetry arises from the last term
in Eq. (4) for the scattering amplitude, if the gap has
nontrivial phase variations over the Fermi surface as, for
example, in the ABM state and the d-wave state we con-
sider, for which the gap is proportional to e'~, where p is

the azimuthal angle of p with respect to the symmetry
axis of the state. The polar state, on the other hand, has
no such phase variations. The scattering probability
then contains a term proportional to Im(tiit22)
xsin(p —p'), which is odd under reversal of the sign of
p

—p'. Physically one may regard the eAect as being due
to angular momentum of pairs being transferred to
quasiparticles during the scattering event. More formal-

ly, the basic origin of this term is the breaking of time-
reversal invariance because of the existence of a conden-
sate of pairs with finite angular momentum.

0.025

0.020

0.015

'- 0.010

0.000

~
~

I

I

I 7T /2
I ~

%
I

I! I
x =09

~
~

I I ———x=07
I

- —-—x =O.Q
! '

!'

I . -——x =0 I

j
/

l

jj /~
///

I

SN -x

x =98

x =0.5

0.0 0.2 0.8 1.0

FIG. 2. K„»/K, „ for the ABM state as a function of temper-

ature.

The angular asymmetry gives rise to qualitatively new

eff'ects. In the ABM state one finds that in a thermal-
conduction experiment the heat current j~ is not parallel
to the temperature gradient V T, even though on the
grounds of crystal symmetry alone one would expect it to
be so. The thermal conductivity is therefore a tensor,

K1. We have calculated K;~ starting from the quasipar-
ticle Boltzmann equation. " It is interesting that the an-

gular asymmetry occurs in what may be called the "in-
scattering" term in the Boltzmann equation (a vertex
correction in field-theoretic calculations), and it is there-
fore not present in the relaxation-time approximation.
In Fig. 2 we show the results of calculations of K„»/K,„
for the ABM state. This quantity is equal to the tangent
of the angle between the heat current and the tempera-
ture gradient in the plane perpendicular to the symmetry
axis of the state, and one sees from the figure that it can
be as high as 0.05 rad for phase shifts in the vicinity of
ir/4 at temperatures of order T,l4. However, if the
phase shift is close to z/2, the eff'ect is much reduced.
The efl'ect changes sign on reversal of the sign of B~.
The coefficient K»„ is also nonzero, and is equal to —K„».
as a consequence of the Onsager relations. ' K„» van-

ishes for the d-wave state, since the gap has a factor
sin8cos8, where 8 is the polar angle, and contributions
from positive values of 8 cancel those from negative
values.

The viscosity and the thermoelectric coefficient can
also have additional components. For the d-wave state
with the gap proportional to sinOcos9e'~, one finds that
the viscosity component r1„», and the ones related to it

by symmetry are nonzero, whereas they vanish for the
ABM state. The coefficient L„of the thermoelectric
tensor is finite for that ABM state, but zero for the d-
wave state. New components of transport coefficients
occur only if the parity of the gap is the same as that of
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the relevant current entering the transport coefficient.
The heat current and the electrical current have odd par-
ity, and therefore the thermal conductivity and ther-
moelectric coefficient can have additional components for
p-wave states but not for d-wave ones. The conclusion
for the viscosity is the opposite of this, since the momen-
tum flux has even parity. Experimental observation of
new components of transport coefficients would provide
conclusive evidence for the existence of unconventional
superconducting states with nontrivial phase variations
over the Fermi surface, and would also determine the
parity of the gap.

The calculations above give further evidence for the
richness of the apparently simple process of impurity
scattering in anisotropic superconductors. In the calcu-
lations we have neglected pair breaking, but this may
be taken into account straightforwardly. Asymmetries
about the Fermi surface can also occur in anisotropic
conventional superconductors, in which the crystal sym-
metry of the order parameter is the same as that of the
Fermi surface, when one goes beyond the Born approxi-
mation. These will be discussed in a separate paper. '

The angular asymmetry of the scattering amplitude will

also lead to anisotropies in the mobility of ions in

superfluid 'He.
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