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Electric-Field-Induced Localization and Oscillatory Electro-optical Properties
of Semiconductor Superlattices
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We show that the application of an electric field F along the growth axis of a semiconductor superlat-
tice results in a strong localization of the eigenstates, a blue shift of the optical-absorption edge, and the
presence of oscillations periodic in F . These unique electro-optical properties are derived here within

the framework of a tight-binding description of the envelope functions and also from numerical solutions
of the Schrodinger equation for a finite set of coupled quantum wells.

PACS numbers: 73.60.Br, 73.40.Gk, 78.20.Jq

In a bulk semiconductor, which usually presents
conduction- or valence-band widths &F., „of a few elec-
tronvolts, the application of an electric field F results in

the well-known Franz-Keldysh effect'. The envelope
eigenfunctions become Airy functions instead of plane
waves, while the optical-absorption coefficient exhibits a
low-energy tail below the band gap and an oscillatory be-
havior above it, characterized by an F ~3 dependence.
Conversely, a quantum-well heterostructure displays
discrete energy levels (AF., „-0) and the application of
an electric field produces the "quantum-confined Stark
effect. "23 A red shift of the optical-absorption edge is

observed, as the quantum confinement energies of the
ground conduction and valence states E ~ and H ~ are
lowered when the potential well is deformed by the elec-
trostatic potential.

Semiconductor superlattices (SL) are unique systems
where the bandwidths &F., „ for the carrier motion along
the growth axis can be tailored in the range of a few tens
of millielectronvolts, while the superperiod d falls in the
range of a few nanorneters. In such systems, electric
fields F such that eFd=&F-, , can easily be applied.
This remarkable situation can be approached on an in-

tuitive basis in the following way: The superlattice is a
series of quantum wells coupled by the resonant tunnel
effect. The tunnel coupling results in the broadening of
the energy levels into subbands of widths ~~,ddE~. The
SL band gap is smaller than that of the isolated quantum
well by —,

' (AE~+AH~). When an electric field is applied
along the growth axis, the resonance condition is turned
off, as the genuine energy levels in the consecutive quan-

turn wells become misaligned by eFd. The tunnel proba-
bility should hence decrease drastically, which in turn
means that the eigenstates tend to localize over a few ad-
jacent quantum wells. Then, it can be predicted that the
absorption coefficient should tend towards the step func-
tion corresponding to a series of uncoupled quantum
wells, thus showing a blue shift of the absorption edge of
the order of 0.5(AF-~+AH~).

In this Letter, we demonstrate the relevance of these
intuitive and novel statements by studying analytically
the electroabsorption in a superlattice within the frame-
work of a tight-binding analysis of the envelope func-
tions. ' This method contains several approximations,
the correctness of which we have checked by solving the
problem numerically in the case of a finite set of coupled
quantum wells. The later approach closely confirms the
validity of the simplified tight-binding treatment, and
contradicts recently reported results.

We consider here a (2N+1)-period SL, clad between
infinite potential barriers. A constant electric field F is

applied along the growth axis z, and the associated elec-
trostatic potential eFz vanishes at the center of the struc-
ture. Let p(z) be the envelope eigenfunction of the
ground state of an isolated quantum well centered at the
origin. In the simple nearest-neighbor tight-binding
analysis, we retain only one level per quantum well, and
the SL eigenstates are expanded as

X, (z) =g-+Py c~y(z nd)—
At zero electric field, this method leads to the well-

known quasicontinuous spectrum of the conduction mini-
band:

eq =E& —2A,, cos(qd), with qd =in/2(N+1) (1 ~i ~ 2N+1), (2)

where k, is the modulus of the transfer integral between nearest neighbors. The corresponding eigenfunctions are ex-
tended through the entire structure, as

sin(nqd), with qd =jn/(N+ I ) (1 ~j ~ N),c„=[I/(N+1) I '"~

cos(nqd), with qd =(j '+
2 )n/(N+1) (0Sj '~ N).
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e„=E]+veFd, —N & v & +N, (4)

and the corresponding eigenfunctions are given by Eq.
(1), with

c„„=J„„(2A.,/e—Fd ), (5)

where J is the Bessel function of integer index m. The
asymptotic expansion of J„—„for small arguments yields

c„„=[1/(!n —v! )!](k,/eFd) "

which corresponds, at large electric

With the same assumptions, in presence of an electric
field F strong enough so that the total potential drop is

larger than the miniband width (NeFd » 2X, ), the same
tight-binding analysis predicts that the miniband spec-
trum [Eq. (2)] is replaced by an evenly spaced spectrum
hereafter called a Wannier-Stark ladder,

exponential localization of the wave function of state v in

the vicinity of the quantum well of the same index, a re-

sult already quoted in the literature. '

It can be shown by various means that the difference
between the exact spectrum and the regularly spaced
ladder [Eq. (4)] is an edge effect, which becomes negligi-

ble for most of the states v(N, as soon as N becomes
large. For example, for a 51-period 30-A-50-A GaAs-

AIQ 3Gao 7As SL, 49 conduction states obey Eq. (4) to a
very good approximation at an electric field of 5 kV/cm.
Hence it is relevant to calculate the optical absorption of
a SL with use of the spectrum given by Eq. (4) and the
related wave functions [Eq. (5)], and analogous formulas
for the hole states. We consider a type-I SL, in which

the electrons and the holes are confined in the same lay-

ers (e.g., GaAs-A1GaAs), and we assume parabolic in-

plane dispersion relations for both particles. In the limit

of thick superlattices, the absorption is found to be equal
to

a(hru) =(2N+1)ao g J ( —2/f)Y(pro —(Es+Ei+Hi+meFd)),
m —N

(7)
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FIG. l. Absorption of a 41-period superlattice, normalized
to (2N+1)ao, vs the reduced photon energy e [hr0 —(Es+Ei
+Hi)]/(k, +k. ), for increasing values of the reduced electric
field f eFd/(@+X. ).

where Eg is the band gap of the well material, Y is the
unit step function, and f eFd/(A, +A,„). T. he prefactor
ao is equal to 2rre P M/nemo ft iu =0.006 where M is
the in-plane reduced mass of the electron-hole pair, P is
the Kane matrix element, and n is the optical index.

The evolution of the absorption spectrum of a 41-
period SL with increasing values of f is shown in Fig. l.
The absorption for a rather small value of the reduced
electric field f-0.2 is close to the zero-field absorption,
which shows the relevance of the Wannier-Stark spec-
trum even at such a small field. On the other hand, for

f=4, which corresponds to a voltage drop between adja-

cent wells equal to the sum of the zero-field conduction-
and valence-band widths, the absorption coefficient is
indeed close to the step function at Es+Ei+Hi which
we would obtain for a series of uncoupled quantum wells.
Although the region of allowed absorption is wider at

f=4 than at f 0 and in particular not strictly vanish-

ing below the SL bandgap, the absorption edge at f=4
is electively shifted to the blue with respect to the f=0
one. In fact, at this field, the other steps at lower and
higher energy accommodate only 10% of the total ab-
sorption. These steps, which occur at energies (Eg+Ei
+Hi)+peFd (p +'1, ~2, . . . ), correspond to oblique
transitions in real space, connecting the nth conduction-
band state (localized near the nth well) with the
(n+p)th valence state, localized in the (n+p)th quan-
tum well. Note that this effective blue shift is much
larger than the well-known red Stark shift which would
be observed in the equivalent isolated quantum well.
Indeed, with the parameters of the GaAs-Gao 7Alo 3As
system, well and barrier thicknesses of 35 A are required
to obtain a 45-meV conduction-band width. The condi-
tion f 4 (see Fig. 1) then corresponds to a field of 65
kV/cm. At this field, the Stark shift in a 35-A-thick
quantum we11 is smaller than 1 meV, to be compared to
a 22-meV blue shift.

The absorption coefficient at a fixed energy inside the
F=O miniband oscillates with the electric field. These
oscillations, which are periodic in F, are distinct from
the Franz-Keldysh oscillations. This F periodicity, il-
lustrated in Fig. 2(a), is strongly reminiscent of the
Shubnikov-de Haas effect. Indeed, in both cases, one
deals with an evenly spaced spectrum (Landau levels or
a Wannier-Stark ladder) which, by a sweeping of the
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FIG. 2. (a) f ' oscillations of the absorption at a fixed re-
d d hoton energy close to the SL band gap, calculated for auce p

riod SL. (b) Convergence of the SL absorption to
'

n toward201-peri
the Franz-Keldysh oscillations, calculated for a -p4001- eriod
SL and a very small reduced electric field f=1.5 x 10

external field (8 or F), is made to cross a fixed energy
(the Fermi energy or the excess photon energy wi

E +E i+ Hi ). However, as shown in Fig.
2(b), these new oscillations give way to t e ranz-
Keld sh effect when the calculation is made for "bulk-
like" conditions, i.e., a small enough F (f

e ys ee

enoug SL (Nf »1), and a photon energy close enoug
to the SL band gap. In fact, this limiting behavior can

(7) b use of thebe derived analytically from Eq. (7) y
Langer asymptotic expansions of thf he Bessel functions.

Finally, an important feature seen
' 'g.in Fi . 1 is that the

absorption always saturates at the same value (2N
+1)an, which results from the Graf sum rule on the
Bessel functions in q.E (7) This is in contradiction with

the results reported in Ref. 6.
The tight-binding approach described above has the

advantage of simplicity, but it is not fully justified since

bound state with all the other (bound or unbound) states
of the wells located in the lower potential region. o

we have numerical-check the accuracy of this approach, we ha
lved the Schrodinger equation for the envelope func-ly sove e c

th structure sketched in Fig. 3 a . e
d be-ture consists of N coupled quantum wells embedde e-

tween thick barriers, themselves terminated by in nite
potential barriers a o1 b t both ends. The electric potentia
is approxima e yt d b a piecewise-constant potential, as

FIG. 3. Sketch of the heterostructure considered in the nu-

h (a) at zero electric field and (b) in a discre-merical approac, a a zero
0 kV cm. Alsotized potential simulating an electric field of 3 cm.

f th modulus of the eigenfunction corre-
'

i and. Ca cu a-'i . 1-sponding to a state near the center of the mini
'

h of the band parameters of the GaAs-tions are made wit use o
'

knesses of 35 A.A10.3Ga0.7As system, and well and barrier thicknesses o

shown in ig.Fi . 3(b). With this approximation, the eigen-
and afunction in eac aeach la~er is the sum of an incoming an a

fl t d lane wave (instead of Airy functions, con-re ece pa
nected at each interface by means of the we-well-known

. This treatmentrules of the envelope-function forma ism. is

11 to take into account nonparabolicity, which cana owsus o
be an im ortant ingredient of the bandwi in a
system, and is particularly convenient from the computa-

f '
I Figs. 3(a) and 3(b) we have alsotional point of view. n igs.

dis la ed the square of the modulus of the wave function
of a representative extended state nea r the center of the
conduction mini an, a

' 'b d and its rapid localization over
three adjacent quantum wells in a moderate electric e

Though of course limited to systems with a re ative y

confirms the results of the tight-binding ana ysis. or
h b t' n obtained for a six-well structure

is essentially identical to that of Fig. 1. In particular,
the saturation of the absorption at (2N+1)an is very

which simulate the continuum that would be present in a
thick super attice.1 . This shows that the localized Wan-
nier-Stark states are weakly coupled to the continuum,
which in turn justifies the tight-binding approac .

The localization of the wave functio ns will also exist
for a type-II superlattice where the conduction- and
valence- an wave ub d f nctions are concentrated in adja-
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cent layers. In this case, an electron localized in a given

layer will be optically coupled to two hole states, local-
ized in the adjacent layers, and thus having diff'erent en-
ergies. In this case, we expect that in the high-field lim-

it, the absorption tends toward a double step at Eg
+E~+H& ~ 0.5eFd. This result is also obtained analyti-
cally with the tight-binding method.

In conclusion, we have shown that unique electro-
optical effects should exist in semiconductor superlat-
tices. These new effects are characterized by a strong
field-induced localization of the eigenstates, a blue shift
of the optical-absorption edge, and oscillations of the ab-
sorption coefficient periodic in F '. Besides its obvious
potential usefulness to the design of new electro-optical
modulators, this localization effect should lead to many
rather unexpected consequences such as a field-induced
enhancement of the exciton binding energy from a 3D to
a 2D regime if the bandwidth is larger than the 3D Ryd-
berg energy. The present effect is also a key to a quan-
tum study of the transport properties of superlattices at
large electric Iields applied along the growth axis.
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