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It is shown that the x-ray diffraction patterns from the Hendricks-Teller model for layered systems
and the icosahedral glass models for the icosahedral phases show large fluctuations between nearby
scattering wave vectors and from sample to sample, that are quite analogous to laser speckle. The statis-
tics of these fluctuations are studied analytically for the first model and via computer simulations for the
second. The observability of these effects is discussed briefly.

PACS numbers: 61.10.Dp, 42.20.Ee, 61.40.+b

The purpose of this paper is to discuss a phenomenon
that is shared by the diffraction patterns of two structur-
al models that aim to describe two very different classes
of solids. The first model, proposed by Hendricks and
Teller,! describes partially ordered layered systems such
as graphite, mica, and various clays. It consists of atom-
ic planes with spacings that randomly assume one of two
or more values. The second model, called the
“jcosahedral glass,”? arose from an attempt to under-
stand the diffraction patterns from the icosahedral
phases discovered by Schechtman eral.? and Levine and
Steinhardt.* It consists of identical icosahedral units
(representing a cluster of atoms, perhaps), randomly
packed together with special attachment rules for near
neighbors (face to face, edge to edge, or vertex to vertex)
that preserve the orientations of the icosahedra with
respect to a fixed set of axes.

The icosahedral glass model is a contender for the
geometrical structure of the icosahedral phases for two
reasons. First, it produces icosahedrally symmetric dif-
fraction patterns with broad spots, whose location can be
made to agree with experiment by adjustment of the size
of the icosahedral unit and by correct choice of the at-
tachment rule, and whose widths are intrinsic to the
geometry of the model and do not vanish in the infinite-
size limit. The latter fact is qualitatively similar to ex-
perimental observations even on slowly cooled samples
where one might, a priori, expect a high degree of
structural order.® Second, its simplicity makes it appeal-
ing from the standpoint of the growth of the phase.®

It comes as a surprise that a random aggregate of
icosahedra should produce diffraction spots at all—the
precise sense in which this is true is discussed below
—and Stephens and Goldman argued that this could be
understood by analogy with the Hendricks-Teller (H-T)
model, which also produces broad spots. Just as the po-
sitions of the planes in the H-T model can be described
by a directed one-dimensional random walk, the centers
of the units in the icosahedral glass model can be de-
scribed by a branched; self-avoiding random walk in
three dimensions, with steps chosen from a set of
icosahedral vectors. The projections of these centers

onto the direction of the scattering wave vector Q can be
argued, with some plausible assumptions, to form an H-
T sequence. The analysis of Hendricks and Teller is
then applicable and predicts the positions and widths of
the spots. "

Although the structures produced by both these mod-
els are random, one nevertheless expects their physical
properties to be well defined in the thermodynamic limit.
The main and surprising result of our paper is that this is
not so for their diffraction patterns. In other words, the
diffraction patterns do not self-average. We shall show
that the scattered intensity 7(Q) at any wave vector Q
varies from one realization to another in the ensemble,
with a variance as large as the mean. Also, the scattered
intensities 7(Q) and I(Q') for a given realization are
essentially completely uncorrelated for wave vectors Q
and Q' differing by more than a few times the inverse of
the system’s linear size. We can prove these results
analytically for the H-T model, and we have strong nu-
merical evidence for them in the icosahedral-glass case.
The ideal diffraction pattern will therefore show large
fluctuations from sample to sample. For a given sample,
in addition, one will see large fluctuations between near-
by values of Q, lending an extremely noisy, spiky, aspect
to the diffraction pattern. This is exactly like the
phenomenon of laser speckle,”'® except that here the
speckle is modulated by the ensemble average, 1o(Q), of
the scattered intensity, which is a strongly varying func-
tion of Q. Indeed, all previous studies of these models
have focused entirely on this average, and it is only in
the sense that 1o(Q) has sharp peaks that either model
can be said to produce diffraction spots.

Since the H-T model is believed to be a good descrip-
tion of layered systems, the observability of speckle in
such materials is subject only to experimental limita-
tions. It is unclear if it can be seen at present, but we see
no reason why it should not be feasible with improved
technology. Since the icosahedral-glass model is not on
quite as firm a footing as the H-T model, the question
naturally arises whether observation of speckle in the
icosahedral phases could help to distinguish this model
from others, such as a defected quasiperiodic struc-
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ture.””!! We shall return to these questions later.

Let us consider the H-T model first. With the as-
sumption of the same form factor for each plane, the
normalized scattering intensity (ignoring factors of pro-
portionality) from one realization is given by

1 iQ(x, —x,)
1(Q) N??e , (1)

where the x;’s are the positions of the planes, and N is
their number. Since each §;=x; —x;-, is an indepen-

dent variable, the ensemble-averaged intensity
(I(Q))=1¢(Q) is given in the limit N— oo by
I0(Q) =1+ | X (@) "+cc. |, 2)
n=1
=(1—|c|?/U =)0 —c*), 3)

where ¢ =(e'%%),12
To study the fluctuations in I(Q), we compute

(r*}(Q):
2 =L iQ(x; —x,+x, —x;)
Q=153 ) @)

We can restrict the sum to x; < xi, x; < x;, and multiply
by 4.3 It is then merely tedious to verify that the only
nonzero contribution as N— o comes from the case
where the pair (x;,x;) is separated from the pair (xx,x;),
ie, x; <x; and x; <x, in addition to the inequalities
above. If we now fix the centers of these pairs and sum
over the differences x; —x; and xx —x;, we get (as
N — ) two factors of Io(Q). Summing over the posi-
tions of the centers of the pairs gives a factor of N2/2, so
that

(1*(Q))=213(Q), (5)

implying that the variance in I(Q) is as large as the
mean, as asserted earlier. '*

Essentially the same computation yields (/(Q)1(Q')).
We now associate the pair (x;,x;) with Q and (x,x;)
with Q', obtaining two independent sums that give 1o(Q)
and Io(Q'). There is no longer a factor of 2 arising from
the interchange symmetry of the pairs, and so

TQIQN =To(Q(Q"); |Q—0Q'| 224/L. (6)

The condition that Q and Q' not be too close is clearly
necessary since otherwise the pairing (x;,x/),(x;,xx)
would also give a large contribution to the sum. (Here,
L is the linear size of the system.)

A simple physical picture for the understanding of the
above results is as follows. Let each &; be either d, or d;
with probability p; and p», respectively. Thus the maxi-
ma in Io(Q) occur when Qd;==2zm;, i =1,2, and the m;
are integers. If d, and d, are incommensurate, however,
the phase mismatches, ¢; =Qd; —2nm; will never vanish
together, implying the absence of Bragg peaks. The
choice ¢ =X;p;i¢; =0 can still produce maxima in I¢(Q),

nevertheless. The phase (mod2z) with which a plane
scatters performs a random walk, with steps ¢, and ¢,
and builds up to a value of n after approximately
neon(Q) ~1/(¢?) scatterers. We can thus visualize the
scattering as taking place from N/N.n coherence
domains of size &£con(Q)~Ncon(Q)d each, with the
scattering within each domain being in phase, and the
relative phases between different domains being com-
pletely random. '®

The simple picture presented above is identical to a
model for laser speckle,'® and is easily shown to lead to
Egs. (5) and (6). In fact, it gives the full probability dis-
tribution of 1(Q):

PU(Q)) =15 "(Qexpl—1(Q)/I,(Q)]. (7)

This can be shown analytically for the H-T model
without appeal to the simple speckle picture,'® and we
shall present strong numerical evidence for it in the case
of the icosahedral glass.

The analogy between the H-T and the icosahedral
glass models suggests that one should see speckle for the
latter model too. Since it is difficult to make this argu-
ment precise, we have resorted to direct computer simu-
lation. We do this in two dimensions using decagons for
simplicity and in order to generate large packings.
There is no loss of generality in this and indeed studies
performed by us on small packings of icosahedra are
consistent with speckle.

We have generated five samples of approximately
250000 decagons each with the attachment rule that
neighboring decagons share an edge. The distance be-
tween the centers of such neighbors is taken to be unity,
and the number density of our packings is 0.83-0.85, so
that the linear size L is approximately 600. Figure 1
shows a radial scan of the diffraction pattern through
two of the peaks generated by one of these packings.
These peaks are located at the same distance |Q], but
are in different directions, and correspond to two
symmetry-related spots in a real diffraction pattern. We
also show a smoothed average of ten peaks at the same
| Q| obtained from two packings. Note that, as expect-
ed, the detailed shapes of the two peaks are very
different, and that they are considerably spikier than the
average. The width of a spike is about 10 ™2, consistent
with Eq. (6).

Since we would have to generate many more packings
than we have in order to test Eq. (5) or (7) directly, we
have resorted to the following approach. Suppose one is
given n numbers Iy, I,...,I,, independently chosen
from the distribution (7) for a fixed Q. It can then be
shown that the quantities w;, defined by

I;

YT Lt -+ n” @)
are all identically distributed according to
pw)=[(n—1)/nl(0—=w/n)""% w=<n, 9)
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and that any & of them, k < n — 1, are jointly distributed according to
pewi, o oowi ) ={n—= DY [(n—k = 1M —(wy+ - +we)/n]n k0 (10)

If we now examine /(Q) from one sample at five
symmetry-related spots with the same |Q/|, and hence
10(Q), the five w;’s constructed according to Eq. (8)
should obey Eq. (9) with n=5. Since this distribution is
independent of the unknown parameter /o(Q), we can
exploit the independence of I(Q) and I(Q’) for large
enough |Q—Q’'| to construct sets of five w’s from
symmetry-related intensities at several |Q|’s. We have
done this by sampling three sets of five symmetry-related
peaks. Within each peak we sample 50 | Q]| values at
intervals A| Q| =0.0402 to ensure that the intensities are
uncorrelated.!” If R=n "'X,;w?, then using Eqs. (9) and
(10) with n=5 and k=2, we find that the mean value R
is 3, and the standard deviation is 5/3v/14 =0.445. Us-
ing our 50 sets we find a mean value of 1.676, which is
well within the standard error, and a standard deviation
of 0.417. Indeed, we can check the entire w distribution.
Figure 2 shows a histogram of the distribution obtained
from all 250 w values for one set of five peaks at the
same |Q/| and another from all three sets. The fit by
Eq. (9) is quite good, suggesting that Eq. (7) is indeed
obeyed.

IQ

FIG. 1. Two diffraction peaks from one sample of 240000
decagons in two symmetry-related directions at the same value
of |Q|. The heavy line is an approximation to Io(Q) obtained
by our smoothing the average intensity of ten peaks at the
same |Q].
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Given the ubiquity of speckle in optics, it is natural to
ask whether other models® for the x-ray diffraction pat-
terns of the icosahedral phases will not also produce
speckle. Perhaps the most important of these is the per-
fect quasicrystal* with uniform phason strain.!"!® By it-
self this produces only shifts in the peak positions and
some additional mechanism for peak broadening must be
invoked. A random distribution of phason strains ac-
complishes this; we do not know if the resulting structure
produces speckle.

We return finally to the question of observing such
speckle experimentally. The foremost requirement is
clearly a highly spatially and temporally coherent x-ray
source.'® If the x-ray coherence length is &, it is neces-
sary to have &= L, and &9> &qon, where L is the linear
size of the region of the same illuminated by the source.
The first requirement is needed to prevent an incoherent
addition of several speckle patterns, and the second in or-
der to see the interference between different coherence
domains. If we approximate the collective effects of tem-
poral incoherence, absorption, and finite detector resolu-
tion by regarding the observed intensity as a convolution
of the ideal pattern with a smoothing function of width
y, the observed intensity can be viewed, roughly, as a
sum of about M==(yL/27)? independent random vari-
ables, which will reduce the contrast of the speckle,
oi/lp, by a factor of M'/z, where of is the variance in
1(Q). Use of feasible values y=10"2 A ™! L=10° A,
gives a reduction in contrast by about 60, washing out
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FIG. 2. Histograms of the w distribution [see Egs. (8) and
(9), and following discussion] from one set of peaks (solid
line), and from three sets (dashed line). The continuous curve
is Eq. (9).
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the speckle. We are hopeful that this number can be re-
duced, thus allowing the observation of these effects.
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