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Density Functionals for the Energy of Electronic Systems: Explicit Variational Construction
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A nonlinear transformation performs the Levy-constrained search formulation of the density function-
al for the electronic energy through a minimization of the energy with respect to a set of variational
coefficients. The construction requires a complete set of arbitrary functions as the auxiliary basis. Trun-
cation of the basis set provides an upper bound to the energy functional. Practical approaches to obtain
accurate upper bounds to this functional are discussed, and a density-functional alternative to the stan-
dard Hartree-Fock method is described.

PACS numbers: 31.15.+q, 02.30.+g, 03.65.Ge

y(r) = [t/ /(r), t/2(r), . . .] (2)

be a vector of orthonormal, linearly independent, finite-

The celebrated paper of Hohenberg and Kohn '

marked the advent of density-functional theory. Howev-

er, the first practical realization of the density functional
for the energy of fermionic systems has been put forward

by Levy. The Levy construction defines the density
functional for the electronic energy E [pl as the
minimum of the expectation value (+

I
H

I
~) over all the

many-electron wave functions ~ that yield the proper
density, O p(r). The main problem with the Levy-
constrained search is to generate all suitable many-
electron functions.

Zumbach and Maschke have proposed the construc-
tion of the Levy density functional based on the repre-
sentation of the many-electron wave function by a com-
plete set of Slater determinants. Unfortunately, their
approach turned out to be invalid because of an errone-
ous omission of the off-diagonal elements in the electron
density [see Eq. (8) in the following]. It should be also
pointed out that the use of the Harriman orbitals 3 for
construction of the Slater determinants is an unoptimal
choice, for they do not resemble Hartree-Fock orbitals.

In the present paper I report the construction of all the
many-electron functions that are admissible in the
Levy-constrained search. I aim first at constructing a set
of orthonormal one-electron wave functions (orbitals)
that, when used to build the many-determinantal wave

function, yield the proper electron density. For this pur-
pose I introduce a vector

y(r) =[y, (r), y2(r), . . . l

of finite-valued continuous basis functions. These func-
tions are supposed to form a complete set, but do not
have to be orthogonal or normalized. For clarity, vectors
in the Hilbert space are denoted by boldface, while the
coordinate vector r is left in italic type. For simplicity,
in the following I assume an occupancy of one electron
per orbital. The Einstein summation convention is used.

Let

valued, continuous functions. Again, these functions are
supposed to form a complete set. We construct all the
Slater determinants I P), I Q), . . . from the orbitals t/t(r).
According to the Lowdin theorem, the set composed of
all these determinants is complete in the many-electron
space. The exact many-electron wave function of the
ground state is a linear combination of the Slater deter-
minants

I ~) =cpI P), c'c, =1, (3)

ok/ ( I/tk (1 ) I 0( 1 ) I t/t/ (1 ));

whereas for any two-electron operator

(5)

(PI g o(,~)Ig)= ,' n@""ok-/.„,
i&j 1

with

ok/y7 (ln/tk (1 ) ly/(2) I 0(1,2) I l/t (1 ) tlt (2)). (7)

The tensors of coupling coefficients, = and 0, are com-
puted according to the Slater-Condon rules. s As a spe-
cial case of Eq. (4) we arrive at

p(r) =CpC g:-p'g /irk (r) t/t/(r). (8)

It is now clear that the transformation

t/ k (r) =f '/'(r)st', /lt„(r),

with s and f(r) calculated self-consistently from

S
—//2

f(r) =p(r) [C Cg:-pgsgst'p„(r) p,, (r) ]

(9)

(1O)

with the vector C minimizing (e I
H

I
+).

To calculate the electron density corresponding to @,
we observe that for any one-electron operator 0 we have

N

&P I Z 0( ) I g) —="gok/, (4)
i 1

with
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and

SJ = f(r)p'(r)pl(r)d r, (i2)

relates an arbitrary complete set of one-electron func-
tions p(r) to the orthonormal set y(r) that, through the
many-electron function (3), yields the proper density.

Both the existence of matrix s and a linear convergence
of the iterative process, Eqs. (10)-(12), can be proven.
For a fixed density, the many-electron function that re-
sults in the minimum of the electronic energy (and thus
in the density functional E [p] ) is reached through a
minimization of the variational coefficients C .

The explicit form of the density functional for the
electronic energy reads

ra

E[p) =min v(r)p(r)d r+(T)+(V«) = v(r)p(r)d r+(T) ' +(V«)(' +min[(T) +(V«) )
CP -" 4 gP

In this equation v(r) is the external potential, (T) ' is the Weizsacker kinetic energy

(i3)

(T)'~'= —,
'

g ~
Vp(r)

~
'p '(r)d'r,

and (V„) ' is the classical Coulomb electronic repulsion energy

"p(r~)p(ri) 3 3 (is)

The variational part of E[p] contains two components: The kinetic energy

(T) = —,
' f(r)[C C~:-pgs)st'Vp„(r) Vp, .(r)]d r —

2 J f (r)
~
C C~:-$gsgsj'p„(r)V&„, (r)

~ p '(r)d r,

and the component that incorporates the electron correlation (including exchange),

(V„)'~' = —' h(r ri)zd'rl d'r2,4 4 rl -r2

with the correlation function

h(rl, r2) = —1+f(r~)f(ri)p '(ri)p '(r2)[C C Op/ sfst'$ $„"p„(rt)p,, (r2)pi(r~)p (r2)].

The variational part of E[p] can be minimized by application of a standard differential calculus. Atomic units were
used in Eqs. (13)-(18).

I have succeeded in performing the Levy-constrained search through a minimization of the energy, Eq. (13), with
respect to the vector C . This yields the exact functional as long as the complete set of functions, Eq. (1), is used. For
the electronic systems that do not possess any high point symmetry of the external potential, the set [x"y'z,
k, l, m =0, 1, . . .j would be an excellent choice for p(r). Any truncation of p(r) will result in an upper bound to F[p).
The functional E[p) provides also the ground-state energy which is obtained by its minimization with respect to p(r).

Let us discuss now the particular case of ~%') being a single-determinantal wave function. The vectors ilr(r) and p(r)
have now only N components, where N is the number of electrons. Equations (8) and (11) are greatly simplified:

p(r) = yl, (r) yl, (r),

f(r) =p(r) [(S ')klpk(r)pi(r)]

The corresponding electronic energy is given now by a Hartree-Fock (HF) functional:

(i9)

(20)

1V jv

EHF[p] =min[EHF(y)] =min g(y~ ~
V+T

~
y;)+ —,

' g(y; ~
I+K~ y;)

y(r) p(r) i=1
(2i)

A A A A

where V, T, J, and K are the external potential, the kinetic energy, and the Coulomb and the exchange operators, re-
spectively. The minimization is carried out over all the vectors y(r) that satisfy Eq. (19). One should recall that the
external potential and Coulomb parts do not depend on the choice of iIr(r). Therefore one can restrict the minimization
to the kinetic and exchange energies.

The transform (9) enables us to replace the constrained search of Levy by an unconstrained minimization over all
possible vectors p(r). The very fact that now we have no constraints on the vector p(r) enables us to use an ordinary
variational calculus for finding the HF energy functional, Eq. (21). The variational part of the kinetic energy and the
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exchange energy, Eqs. (16)-(18),read

(T) = —,
' f(r)[(S ')ttVpk(r). Vtitt(r)ld r —

& „ f (r) t (S ')ttpk(r)Vtltt(r) t p '(r)d r (22)

x [(S )kf leak (r1)titt (r1) ] ' [(S ' ) kttttk (r2) tlat (r2)] ' d r1 d rp. (23)

Calculating the variation of their sum with respect to
bp(r), and bearing in mind that S depends on p(r), one
arrives at a set of N coupled differential-integral
Hartree-Fock-type equations. Solution of these equa-
tions yields the optimal vector p(r) and, in turn, the HF
energy functional in an explicit form. In fact, because
for any nonsingular matrix C and any finite and continu-
ous real-valued function that has no zeros, p(r), the
transformation

y(r) —p(r)y(r)C (24)

leaves the value of the functional (21) unchanged; only
N 1 equat—ions have to be solved, for we can always set
p1(r) = l. Eventually, another equation that arises from
the variation with respect to Bp(r) has to be solved to
obtain the ground-state electron density and the corre-
sponding Hartree-Fock energy.

For lack of space I do not give here an explicit form of
the variational equations (they will be published else-
wheres). They are complicated and probably, like HF
equations, are not easy to solve for large molecular sys-
tems. There is, however, another route to obtain approx-
imate density functionals for the HF energy. One should
note that most of the important features of the electronic
wave function (like the cusp properties at the divergence
points of the external potential and asymptotics for large
distances) can be readily incorporated in a trial electron
density. Unlike in the HF method, in which the orbitals
are used to generate the electron density and therefore
should bear a substantial accuracy to provide a reason-
able HF energy, the present formulation is quite insensi-
tive to the choice of the basis functions p(r), as long as
they possess a proper symmetry The resultin. g energy
is, of course, an upper limit to the exact EHF [p].

I envision that the present development can have a

t

substantial impact on electronic structure calculations.
The electron density can be easily represented by its
values at the nodes of some grid in the Cartesian space,
while the generating set, p(r), can be represented analyt-
ically by very simple functions. This would result in a
tremendous improvement in accuracy versus CPU time
ratio for Hartree-Fock calculations.

Because of its simplicity, I believe that the present ap-
proach can find several applications in quantum chemis-
try. First of all, it enables one to obtain wave functions
(exact or approximate) and ground-state energies direct-
ly from electron densities (calculated or experimental).
It can be also a starting point for several approximations
and bounds to E[p].
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