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Basis for a Characteristic Temperature in Nuclear Fragmentation
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(Received 22 February 1988)

The apparent characteristic temperature observed in the fragmentation of highly excited nuclei is

studied by calculations using a simple model consisting of an expanding and emitting source. A charac-
teristic temperature for emission, nearly independent of the initial temperature, is found in the calcula-
tions, and the underlying physics is interpreted. This temperature is consistent with the values found in

experiments which seem independent of bombarding energy.

PACS numbers: 25.70.Gh, 24.60.Dr, 25.70.Np

There is increasing experimental evidence to indicate a
characteristic temperature for the fragmentation of high-

ly excited nuclear systems. This temperature, on the or-
der of 5 MeV, has been seen in a wide variety of reac-
tions. It has been measured by the determination of the
relative yields of excited states in fragments of mass 5, 6,
and 8, arising from reactions involving projectiles with
incident energies of 35, 60, and 94 MeV/nucleon. ' In
each case the data suggest that the fragments arise from
a system at a temperature of approximately 5 MeV. In
addition, the isotope yields from ultrarelativistic proton
collisions are also consistent with a similar temperature.

In search of an explanation for a characteristic tem-
perature I have investigated fragment emission within a
schematic model. This model involves an expanding nu-

clear residue which statistically emits nuclear fragments
while expanding. Although the model greatly simplifies
the description of the expansion dynamics, it contains
physical effects which are expected to be important in a
more realistic treatment, and thus its use should provide
insight into the real process.

The essential features of the model will be outlined
here. The dynamical aspects of the process are treated
by the calculation of the density of the residue, p(t ), at
each instant in time. Here p is taken as the density of a
uniform sphere of radius R(t) containing A(t) nucleons.
Both the density and the number of residue nucleons
change with time. The particle loss from the residue is
calculated with emission rates governed by the phase-
space considerations of the Weisskopf detailed-balance
procedure.

There is a coupling between the emission process and
the instantaneous density of the residue. First, in deter-
mining the emission rates, I model the excitation spec-
trum of the residue by a Fermi gas. The density deter-
mines the instantaneous Fermi energy for this, and hence
the temperature associated with a given excitation ener-

gy. Second, the density determines the separation ener-

gy for the emitted fragments. The emission process, on
the other hand, influences variations in the density of the
residue. Since these are determined by the conservation
of energy, they are coupled to the emission process

through the changes in both excitation energy and com-
pressional energy which are associated with the removal
of particles.

I assume that the total energy is distributed in five
forms: (a) collective kinetic energy of the residue, (b)
collective compressional energy of the residue, (c)
thermal excitation energy of the residue, (d) kinetic en-

ergy carried by the emitted particles, and (e) the separa-
tion energy associated with the emitted fragments. The
emitting system evolves with conservation of the total en-

ergy, i.e., the sum of the rates of change for the five

types of energy is zero. Each of these rates can be ex-
pressed in terms of the two primary functions of time,
A(t) and p(t), and their derivatives. In order to be able
to determine both A(t) and p(t), I imposed an addition-
al constraint, namely, that the energy is conserved for
the emission process alone in the frame of the expanding
surface of the source.

The changes in the thermal excitation energy arise
from two effects: particle emission and density variation.
For the first, the emission rates are taken at constant
density. For the second, the expansion is assumed to
occur at constant entropy. In the emission, C B+b, it
is convenient to divide the removal energy into two con-
tributions: a part Qb representing the mass difference
taken at normal density and a part arising from the
difference of the density from this normal value. The
latter can be expressed in terms of the compressional en-
ergy per particle y(p), where this function is related to
the equation of state. The total separation energy is then
given by Qb Ab y(p).

The emission rates (dNb/dt) are obtained, as in Fried-
man and Lynch,

dNb/dt dEb ttR(t) (Eb —Vca)e(E,,
—Vca)

f&b [f*(p,T)+ y(p)] —QbI/T —Eb/TXp e

where f* is the free energy per particle of the residue,
and VcB is the Coulomb barrier. To obtain the tempera-
ture T I assume that the instantaneous thermal excita-
tion energy is that of a finite-temperature Fermi gas
having a Fermi energy dependent on density: eF (p)
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FIG. 1. (a) Temperature vs density, and (b) mass number
vs temperature, for the instantaneous residues obtained during
the deexcitation process.

=~co(p/po) "'
The changes in density are found to be governed by

the thermal pressure, which produces a decrease (expan-
sion), and forces represented by the collective compres-
sional energy, which drive the residue toward normal
density. Reaction forces between the emitted particles
and the residue also produce changes in p.

Combining the ingredients outlined above, one can
calculate the evolution of any system beginning from a
choice of initial values for A, Z, p p, eF, and T, and an

equation of state represented by the function y(p).
From this condition, the system is stepped through a
series of small time intervals. Numerical solutions fall
into two classes depending on the equation of state and

the initial conditions. For one of these, the residue densi-

ty decreases without limit; for the other, the density un-

dergoes oscillations.
I have performed calculations with the above model to

search for a basis for a characteristic temperature. The
calculations started with 'Zr at initial temperatures
ranging between 15 and 25 MeV, a range in which the
density expands without limit. A plot of temperature of
the residue versus its density, obtained during the deexci-
tation process, is shown in Fig. 1(a) for T,„of 15, 20,
and 25 MeV. These curves show a striking change as
the density decreases. The temperature initially falls ac-
cording to the isentropic expansion until there is a

marked change at what appears to be a limiting temper-
ature. Furthermore, one sees that this temperature is
approximately the same for each initial temperature.
Calculations with different equations of state showed
similar behavior but with diff'erent limiting tempe". atures.
Another interesting eff'ect is to be seen in Fig. 1(b),
which shows that the mass of the instantaneous residue
declines sharply at the limiting temperature.

Next I analyze the physics in the model which gives
rise to the abrupt change in the temperature-density re-
lationship. This analysis provides a means for estimating
the specific value of the limiting temperature. Observe
that the temperature falls less rapidly with reducing den-

sity below the critical value. Furthermore, the mass of
the residue drops suddenly at precisely the same stage in

the process. These two eff'ects are closely related. Imag-
ine an excited system which is expanding under the force
of thermal pressure. As the system expands the temper-
ature falls because of particle loss and density change. If
the particle loss is small, and the expansion is otherwise
isentropic, then T ~p . During the expansion the
compressional energy increases as the particles are
drawn farther from the attractive influence of their
neighbors. When a composite fragment particle is
formed and leaves the expanded residue, the nucleons it
contains must coalesce. This process releases energy to
the fragment's surroundings, i.e., the residue. That ener-

gy heats the residue and consequently slows the rate of
temperature fall. When particles are emitted from a
residue at normal density there is generally a net loss of
energy from the residue since they carry away both ki-
netic energy and the required separation energy. How-
ever, when the residue is sufficiently expanded coales-
cence heating becomes important. The heating eff'ect is
greatest for those fragments which, once formed, have
the highest binding energy per particle. Thus, nucleons
and loosely bound fragments do not contribute very
much to this elect but their emission is influenced by it.

We can make a simple estimate of the conditions un-

der which coalescence heating becomes important. By so
doing we can estimate the limiting temperature. The
Weisskopf statistical emission rate given above provides

d~ (~d
I ~'f'+&& '

Nb( t~e

The free energy f* is negative. When p equals pn,

y(p) =0, and exp(AI f*/T —Qs/T) has a small value,
since the argument of the exponential is large and nega-
tive, especially for heavy fragments. As the density de-
creases the positive y(p) term becomes important. The
limiting temperature occurs when the emission rate,
especially for heavy particles, is high. This requires that

f*(T,p) = y(p). —With this relationship I estimate the
limiting temperature.

For simplicity I take ) (p) =(K/18)(1 —p/pn) . The
binding energy per particle at normal density is approxi-
mately 8 MeV. I require that this binding energy go to
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zero when the density vanishes. A value of 144 MeV for
the spring constant K will provide this condition. For K
greater than 144 the binding energy per particle reaches
zero at nonzero densities. Since positive values for this
quantity are not physical at low densities I set y(p) to
the constant value of 8 MeV for all values of density for
which the parabolic form would exceed 8 MeV.

I next determine the values of T and p for the condi-
tion at which the emission rate becomes large. I assume
that the early expansion to reach this condition is isen-
tropic, so that T=Tm»(p/po) t . Therefore the condi-
tion is determined by T alone, f (—T) =y((T/
T,„)'t po}. I evaluate f*(T) using a finite-tempera-
ture Fermi gas. For this case it can be shown that the
function (f (T)/T] depends only on (T/eF), where eF is
the Fermi energy. Since eF is proportional to p, as is
T, the function f (T)/T is constant during the initial
expansion. Thus f (T) = (T/T „)f*(T,„).

Using this relationship with the equation above, we
can estimate the limiting temperature for any T,„given
K and eF. Limiting temperatures calculated by this
means for T,„ranging from 15 to 25 MeV are shown in

Fig. 2. The resulting Th is seen to be essentially in-
dependent of T,„but to depend weakly on K. We have
used eF =25 MeV, which provides an excitation energy
per particle of T /10 for low energies. With this Fermi
energy, and with K =144, we find that T is approximate-
ly 4.5 and essentially independent of the initial tempera-
ture. For t.'F taken from 20 to 30, there is about a 1-
MeV spread in the corresponding values of T. It is also
clear that the specific dynamics of the expansion has no
eA'ect on this estimate of the critical temperature. If the
system is initially expanding from po with a finite value
of p, it will reach the same critical temperature, as long
as the process is isentropic.

The density at which this temperature is reached does
vary with the initial temperature, p =po(T/T, „) i .

Thus, for the case of EC =144, with T =4.5, we obtain
densities of 0.08 and 0.16 po for T,„of25 and 15 MeV,
respectively.

In brief, I have found that the rate for particle emis-
sion increases dramatically for an isentropically expand-
ing system when a specific temperature is reached. That
temperature is nearly independent of the initial tempera-
ture and only weakly dependent on both the equation of
state (spring constant) and the Fermi energy for normal
densities. The temperature is also independent of the in-
itial rate of density expansion.

In detailed calculations I find that the mean tempera-
ture for the emission of most of the intermediate-mass
fragments is very close to the characteristic temperatures
obtained above. The temperature of the residue contin-
ues to fall after reaching this value, but the emission rate
for heavy fragments decreases greatly after the critical
condition is reached causing a sharp peak in the emission
rate. This peaking may be understood to be a conse-
quence of the coalescence heating. The emission rate of
heavy fragments is governed by an exponential whose ar-
gument is proportional to the free energy f*. To get a
rough estimate of the behavior of f* with time let us
consider the low-temperature limit where

df*/dt =2(f*/T)(p)(dT/dp —
—,
' T/p).

For T varying like p t, df*/dt is positive. When
dT/dp( —,

'
T/p, however, df*/dt is negative. This re-

versal which occurs at the limiting temperature [see Fig.
1(a)] dramatically reduces the emission rate.

Finally, let us consider the measurement of the rela-
tive yield of states separated in energy by hE. The frag-
ments in each of the states are emitted during the entire
course of the evolution of the residue. If (dN/dT) is the
rate for emission of the lower state, then e t (dN/
dT) is the rate for emission of the higher state when the
spin degeneracy is the same. The ratio of the yields, Ry,
is then

10

f ""e ~tr(dN/dT)dT
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FIG. 2. Limiting temperature vs maximum temperature.
The curves, lowest to highest, are for K=150, 175, 200, and
250 MeV, respectively, with t F =25 MeV.

The apparent temperature T& is then defined by
e ~~ r& =Ri.. In general T~ need not equal (T). How-
ever, if dN/dT is strongly peaked, then the two will be
close in value. Figure 3 shows the calculated tempera-
ture dependence of dN/dT for Li fragments. When this
distribution is used with AE values ranging from 5 to 15
MeV, the values of Tz and (T) are found to be nearly
equal.

In summary, a simple model has been used to examine
the possible basis for a characteristic temperature ob-
served in the fragmentation of highly excited nuclei. The
model involves the statistical emission of fragments from
sources whose density varies with time. Calculations
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cited states are nearly equal to the limiting temperature.
This is due to a narrow emission window which is a
consequence of coalescence heating. The values for the
temperatures agree well with experimental results. Note
that this value is set by two fundamental properties of
nuclei, the equation of state (characterized by binding
energy per particle of 8 MeV and spring constant K) and
the density of excited nuclear states at normal densitites
(characterized by the Fermi energy eF).

Although the model used is very simple, it is believed
that it contains enough of the general features of physics
operating in nature to permit extension of the con-
clusions to the results of experiments.

This work was supported in part by the National Sci-
ence Foundation.

FIG. 3. Difl'erential emission rate (dN/dT) vs temperature
for Li fragments, from 'Zr, with Tm„=20 MeV, K=144
MeV, and t.'F =25 MeV.

provide evidence for a limiting temperature, nearly in-

dependent of the initial temperature. This feature ap-
pears to arise from coalescence heating. A procedure for
estimating the limiting temperature has been estab-
lished. The mean emission temperature and the ap-
parent temperatures obtained from relative yields of ex-
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