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Chiral Gauge Theories on a Lattice
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%e show that chiral gauge theories can be put on a lattice by exploiting the idea of adding extra de-
grees of freedom. %e also examine the lattice chiral Schwinger model to find that the gauge interaction
imposes a restriction on the values of a parameter peculiar to the lattice fermion.
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Quantization of chiral gauge theories has been a
long-standing problem because of chiral anomalies which
lead to gauge-noninvariant, nonunitary, and nonrenor-
malizable theories. The cancellation of the anomalies
among the fermion contents has been a guiding principle
of the building of unification models. However, recently
the possibility of consistent quantization of the anoma-
lous theories has been suggested by many authors.
Jackiw and Rajaraman' show that the chiral Schwinger
model, which is exactly solvable, yields a consistent and
unitary but not gauge-invariant theory with a massive

gauge boson. On the other hand, Faddeev2 suggests that
it may be possible to construct a gauge-invariant con-
sistent theory by introducing extra bosons through the
Wess-Zumino (WZ) term. Along this line, the chiral
Schwinger model is reanalyzed to be understood that the
eA'ective action of Jackiw-Rajaraman coincides in some
gauge with that computed in the theory with the WZ
term. Although attempts are made to construct con-
sistent theories in four dimensions, most of those are
limited to two-dimensional theories.

These lessons on quantizing anomalous gauge theories
tell us, "Any gauge theory must be constructed in a
gauge-invariant manner. If not, add the extra freedom
to recover the gauge invariance. " Following this spirit

one could put chiral gauge theories on a lattice. If this is

the case one has a new possibility of lattice gauge
theories, since in spite of the success in QCD, those can-
not be accommodated to the chiral gauge theories such
as the Weinberg-Salam model because of the existence
of a chiral-symmetry-breaking term called the Wilson
term. Needless to say, the advantage of the lattice
theory is that it retains the explicit gauge invariance
even at quantum level and allows nonperturbative stud-

1es.
In this Letter we present a general prescription to con-

struct a model of chiral gauge theory on a lattice which

contains extra scalars to respect the chiral gauge invari-

ance. Further employing the chiral Schwinger model, we

calculate the eA'ective action of the gauge field and show

that the gauge boson becomes massive as in the continu-
um theory so that a parameter peculiar to the lattice fer-
mion is restricted because of the gauge interaction. If
mass generation occurs also in four dimensions, we can
formulate SU(2)t. U(1) electroweak theory on a lat-
tice which might alter the aspects of the Weinberg-
Salam model such as particle contents and phase struc-
ture.

We start from the Wilson's lattice fermion action in D
dimensions,

Sf 2 g ttt (n ) y„[y(n +p ) —tit(n —it ) ] + —,
' rg t7t(n ) [tit(n +p ) + ttt(n —p ) —2 tit(n ) ].

ttr(n) —itt" (n) =[h(n)Pt. +Pit]ttr(n),

y(n)- p"(n) =y(n) [h'(n)Ptt+P, ],
(2)

The second term on the right-hand side is the Wilson

term, which has been introduced to avoid the species
doubling and whose coefficient, r, is a free parameter '
with r) 0 to satisfy causality. It is also argued that a

rigorous treatment of the fermion path integral by means

of the coherent states requires r=1." Our convention

is that all the lattice quantities are dimensionless:
a (1 —D)/2 Q a (2 —D)/2g g D/2 —

2eII/', p~ a
the left-hand sides denote those of the continuum and a
is the lattice constant. Now let us build up a fermion ac-
tion invariant under the chiral gauge transformation GL,

U„(n ) U„"(n ) =h (n )U„(n )h "(n +p ). (3a)

However, the Wilson term, which breaks the chiral in-

variance explicitly, cannot be rendered invariant simply

I
where h(n) is an element of the compact Lie group GL
and PL tt =(1 ~ y5)/2. [For example, ys=iyiy2
(yiy2y3y4) in two (four) dimensions. ] To this end we

utilize the previous principle of keeping the chiral gauge
invariance as well as the Euclidean (Lorentz) invariance.
The first term on the right-hand side of (1), called the
Dirac term, can be made invariant under (2) by the
introduction of the link variable U„(n) =exp[ieA„(n
+p/2)] transforming as
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by the introduction of U„(n) .This violation of the chiral symmetry is the origin of the anomaly on a lattice. ' In or-
der to make it invariant, we must introduce a unitary field g(n) =exp[ie(n)] which compensates the change of the fer-
mions under (2) by transforming as

g(n) —g(n)h '(n)

Furthermore, if we require locality and Hermiticity, the following gauge-invariant action is obtained almost uniquely 3:

S,[~,&,A, O] =S,[~,~,A]+Sw[~, ~,e],

SD[y, y, A] = —
2 g [P(n) y„[U„(n)PL+Pnl y(n+ p ) —y(n+ p )y„[U„(n)PL+Pg] y(n)],

(4)
Sw[&, PO] =

2
g [y(n) [g (n)Pa+PL][g(n+p)PL+Pg]y(n+p)
fl, P

+P (n+ p ) [g (n +p )PR +PL ] [g (n )PL +PR ]y (n ) —2 y (n ) [g (n )Pg +PI ] [g (n )PL +Pp ]y (n )]

(5)

r[A, e] =ln [dydee]exp[Sf[+, lp, A, O]],

where

v„e(n) =8(n+ p) —e(n)

The fact that I [A, e] is a function of A„—V„e/e tells us that it is gauge invariant and that 8 can be regarded as the
Goldstone-Higgs field. I [A,O] can be worked out perturbatively:

r[A, O] = g, g g A„,(ni+p, /2) A„„(nk+pk/2)I„, „„(ni+pi/2, . . . , nk+pk/2),
1

k =I n, ,y, nk, pk

where I „,„, „„corresponds to the k-point vertex function in the continuum theory and is given by

Here the situation of the chiral gauge invariance should
be compared to the continuum theory where the addition group, we now illustrate the calculation of the eA'ective
of the WZ term kills the anomaly from the fermionic action of the gauge field defined by
functional measure, while in the lattice theory the intro-
duction of g(n) wipes out the chiral-breaking nature of „[~[A]] [de] „ IS [U]+r[A 8]]
the Wilson term. In this sense the lattice action (4) 4

might be regarded as an alternative to the classical ac-
tion plus the WZ term in the continuum theory. Since
the WZ terms have involved form, our action could be
more tractable when one considers the extension to real- (6)
istic models. '

Adopting the simplest example U(1) as the gauge with Sf from (4). Because of the invariance of the fer-
mion measure, I [A, e] can be rewritten as follows:

r[A, e]=ln„[dy' 'dP ]exp[SD[ys ', y', A]+Sw[y' ', y, e]I

=ln [dydee]exp[SD[y, y, A Ve/e—]+Sw[y, y, O]}

=r[A —ve/e, o], (7)

+ 2 + r1"Tr[(is xiii) ~]
(lo)

Here S and Z are the free propagator of the fermion and the gauge-fermion vertex, respectively.
Now we apply these prescriptions to the chiral Schwinger model. The detailed calculation of I „,„, will be presented

elsewhere. ' Here we write down only the result in the continuum (a~ 0) limit:

e2 f
r[A, O]= — d'xA„(x) a(r)6„, (6„.+is„.) (—S,p+ie„~) A, (x),8~~ pv pa pa

where the higher-order terms in A„vanish in the continuum limit' and a(r) is a dimensionless constant defined by

C(q) cos qi —2C(q)cosq|sin qla(r) = I+ d q
[sin ql+sin q2+r C(q) l

(12)
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TABLE I. Numerical values of a(r) —
1 and P(r) for r =0, 0.1, 1, r„2, and ~, which are

the integrals appearing in the 2 term of the fermion determinant and in the anomaly, respec-
tively. The analytical calculation tells us that P(r) = —

1 for all r, but only that a(0) =4 and
a(~) =0.

a(r) —
1

0
0.1

1.0
1.518431 33

2.0

3
2.898 611 88 + 0.000001 41
0.508 883 10+' 0.00000001
0.00000000 w 0.00000002

—0.261 710 14 + 0.00000003
—

1

—
1

—1.000000 39 + 0.000005 52
—0.99999999 + 0.000 00001
—1.000000 00 + 0.000 000 02
—1.00000000 + 0.000 000 02

—
1

with C(q) =/„=1p(1 —cosq„). In contrast to the continuum theory, in which the A ~ term is introduced with an arbi-
trary coefficient by one's taking account of the violation of the gauge symmetry due to the anomaly, "7 we do have the

term as a consequence of the lattice calculation. This term originates from the mixing of the left- and right-handed
fermions through the Wilson term. a(r) seems to be a monotonically decreasing function of r by numerical analysis
and its values for several r are listed in Table I. To demonstrate the reliability of the numerical calculation, we also
compute the coefficient of the chiral anomaly, ' P(r). It has almost similar form to a(r) —

1 as given by (12) and is
defined by

(8„JL,„&= —iP(r)(e /4z)e„,a„~„
and

C(q) cosq1cosqi —2C(q)cosq1sin qp

[sin~ql+sin~qp+r C(q) ]

which can be analytically evaluated to be —I for all r. ' Thus we have

(i4)

2

r[g, el = — d'x[A„( )x
—e 'B„e(x)] a(r)S„, (8„.+ie„.)—' (6,p+ie, p) [&,(x) —e ' t),()(x)]

8z" pv pa pa

=r[A, 0]+rwz[~, ()],

where I wz denotes the WZ term, which indicates that 8 also plays the role of the WZ scalar. After performing the 8
integral by regarding it as a Gaussian integral, '9 provided a(r) ) 1, we obtain

e' a(r)'W[al= —,
' d' Wx„( )x&—2 g p 4z a(r) —1

This shows that if a(r) ) I the resulting theory is uni-

tary and then the transverse component of A„has a mass
rn such that

e' a(r)'
4z a(r) —1'

in agreement with previous works. ' ' Instead of the 0
integration we find the same result by use of bosoniza-
tion. For a(r) =1 the mass diverges and the massive

gauge boson disappears. '
The condition a(r) ~ I imposes a restriction on r such

that 0 & r (r, in contrast to the free theory where
0 &r & ee. Here r, is defined through a(r, ) =I, whose
numerical value is about 1.5184313. I takes a value
between e /z and infinity for 0 & r ( r, .

To summarize, we have developed the idea of quantiz-

t

ing chiral gauge theories and found that the fundamental
action of the lattice fermions contains extra scalars
necessary for the action to be invariant under the chiral
gauge transformation. We have then discussed the
effective action of gauge fields in the lattice chiral
Schwinger model. The resultant theory is unitary for
some range of the parameter r, the coefficient of the Wil-
son term, to wit, the gauge interaction places a restric-
tion on the range of it. However, it should be em-
phasized that we are indebted to the exact solvability of
the model in two dimensions for reaching these conse-
quences.

As for non-Abelian theories in four dimensions,
I [A, o] of Eq. (7) is a function of A~ =gA„g
—(i/e )g r)„g instead of 8„—(I/e )8„0. In general,
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however, I [A, o] cannot be calculated exactly, and so we

must adopt some approximation methods. With the aid
of the weak-coupling expansion I [A, ()] is shown to pos-
sess an A term, which might indicate the mass of the
gauge field. In contrast to the two-dimensional case, the
limit a 0 cannot be taken, which causes ambiguities in

the theory due to the counterterms: The problems of re-
normalizability and unitarity might be subtle in this
framework. Nevertheless, our theory has the advantage
of allowing nonperturbative analyses such as the strong-
coupling expansion and the Monte Carlo simulations,
since it is defined on a lattice from scratch. These sub-
jects are very intriguing because our theory might oA'er a
diA'erent phase structure from the standard Weinberg-
Salam theory.

After the submission of this work we have received a
report by Smit. ' We would like to thank him for send-

ing it to us.
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