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Chiral Gauge Theories on a Lattice
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A chiral gauge-invariant lattice fermion action is derived from a chiral gauge-variant Wilson fermion
action without change in its partition function. By use of this action it is shown that anomalous gauge
theories in four dimensions are renormalizable. An application to the chiral Schwinger model shows that
it is unitary for a range of Wilson parameter r.
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Nowadays, chiral gauge theories play important roles
in elementary-particle physics. In particular, it is very
important to analyze chiral gauge theories with the lat-
tice regularization. Unfortunately, however, under rath-
er mild conditions it was proven that chiral fermions can-
not be defined on a lattice without species doubling. '

Wilson avoided this problem by introducing an extra
term which lifts the mass of the doubling modes. This
term, however, explicitly breaks the chiral invariance of
the action. In the case of the chiral gauge theory, this
means that the Wilson fermion breaks not only chiral
symmetry but also gauge invariance. The lack of mani-
fest gauge invariance is particularly undesirable because
that represents perhaps the most important feature of
standard lattice gauge theory.

Can we overcome this difficulty? The answer is prob-
ably no. The reason is as follows. In the usual perturba-
tion theory it is well known that the chiral gauge theory
has the (local) non-Abelian anomaly. Since the lattice
theory is a well-defined, regularized theory, anomalous
symmetry cannot be maintained on the lattice. There-
fore it is expected that chiral gauge symmetry must be
broken on a lattice. Indeed, the Wilson term gives the
correct non-Abelian anomaly in the perturbative contin-
uum limit. Furthermore, the explicit breakdown of the
chiral gauge symmetry is not unique to the lattice regu-
larization: Pauli-Villars regularization or dimensional
regularization, for example, also breaks the chiral gauge
symmetry. When the cutoff is finite the chiral gauge

symmetry is broken not only for the anomalous case but
also for the anomaly-free case such as SU(2). In this
sense the chiral gauge symmetry is not a true symmetry
of regulated quantum field theory. From the above con-
sideration, it is unavoidable to use a chiral gauge-variant
action, such as the Wilson fermion action, at the starting
point. However, it is uncomfortable to use a gauge-
variant action. So in this Letter, starting with the Wil-
son fermion action, I show that it is possible to make it
gauge invariant by introducing an auxiliary field,
without changing the partition function. After integra-
tion of this auxiliary field I get a gauge-invariant but
nonlinear fermionic action for chiral gauge theories on a
lattice. There are two diferent purposes to the use of
the lattice action for chiral gauge theories: One is, of
course, to analyze the nonperturbative property of elec-
troweak interactions on a lattice. The other aim is to
answer whether anomalous gauge theories are consistent
or not. In this Letter I discuss only renormalizability
and find that anomalous gauge theories in 2D and 4D
are renormalizable. Finally, I apply my method to the
chiral Schwinger model' and discuss the unitarity of the
theory. The detailed calculations of this Letter will be
published elsewhere.

The action of the chiral gauge theory with Wilson fer-
mions is given by

S =Sp+ Sw+ Sp,

where

a"
Sii= +any„l(Ln, „&L+Rn,„&g)iiln+I-.—(L,' I-, „I'I-+Rn i-,„I'z)&n I. , -

p, p

ra d

ZÃn(Yn+gl+ Yn —„2Yn)™ZYnWn
20 p, p p, p

Here PL q =(I + y5)/2, L„„is a left-handed (right-handed) gauge field, Sp is a gauge-invariant part of the fermion ac-
tion, and Sw is the Wilson plus mass term for the fermion. n is the position of a lattice site, and gi is a vector whose pth
component is 1 and all others 0. For generality I add the fermion mass term to the action though it is usually prohibit-
ed by gauge invariance. So is a pure gauge action for L, „an R, „. It is noted that Sw is gauge variant and therefore
both left- and right-handed fermions are necessary. Of course, they can have diferent quantum numbers.
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Next I rewrite the partition function Z:

Z =„+dgLdgR X)Vsx)ynL X)Re"g',
D

where

ra"
S(g) =S0+SO — gyn[g„PR(g, +„-yn+„+g, „-yn „-

—2g, yn)
2a np

+gn PL(gn+jg Wn+Ss+gn —
St Wn —)j 2gn Wn) ~ ™ZWn(gn"gnPR+gn gnPL ) Wn.

Here g„ is a matrix-valued scalar field. To get the above equation, inserting the identity that fdg, R =1 where dgL

is the Haar measure on the gauge group, I make a change of integration variables:

Wn =(gnPL+gnPR)gn~ Ln, p =gnLn, pgn+&~

pn Wn(gn PR+gn PL)~t Rn, p gnRn, pgn+ss
Lt Rt R ~ Rt

I omit the primes on the new fields in S(g).
An interesting property of S(g) is that it now has a gauge invariance: S(g) is invariant under the gauge transforma-

tion

Wn (llnpL+llnpR) Wni Lnls llnLnplln+ss~ gn gnlla
—

(l Ltp +l Rtp ) R~ l RR l Rt gR gRl Rt

where hn is a gauge-transformation function. Some years ago it was pointed out that formal gauge invariance can gen-

erally be derived from gauge-variant theory. The above result is an application of that method.
There are some remarks.
(1) It is not substantially more difficult to do Monte Carlo simulations by use of the action S(g) rather than S.
(2) The integration over g„has the same eA'ect as an integration over "all" gauge transformations. This method is

proposed by Harada and Tsutsui to quantize the anomalous gauge theory in the continuum approach. s

(3) After integrating the fermion field, I get the following partition function:

Z = gdg„dg„2)L 2)R exp[S (g, L,R) +S,f(1,L,R)],
n

where I define

S,f(g, L,R)—:ln 2)fr'J)ye lg

S (g, L,R) =S,rr(g, L,R) S,rr(I, L,R).—

S is nothing but the Wess-Zumino term. q This for-
mula (2) shows that I integrate the Wess-Zumino term
over g„' to calculate Z. s

(4) If I add a gauge-invariant kinetic term for gL R to
the original action S, I can identify g, R as the angular
part of a fundamental Higgs field. Under this identifi-
cation, the model is equivalent to the one proposed by
several authors. ' However, I do not have to add the ki-
netic term in the present approach and, furthermore, the
theory becomes unrenormalizable in 4D if I add the ki-
netic term.

In some cases I can perform the g integral explicitly
unless the kinetic term exists. Some results for when

only the left-handed gauge field exists are listed below.
First I define

K= Qdg, exp[S(g) —S0 —So).
n

(1) U(l) case: The number of left-handed fermions is

k and U(1) charges are q~, q2, . . . , qk. Then

where

,
(A', )'(A„)

s=0 gl +m, =s gq, (l, m, ) =0—

A', =a y'„PR M —
—,
' rag„&„' y&,

An =a M 2~ raZS &S WnpLYn.

For example,

K=QI0(2(A A )' ) for k=1,

where I0 is the zeroth-order modified Bessel function.
(2) SU(2) case: A left-handed fermion is the doublet

and a right-handed fermion is the singlet. Then

Jr. QS, (2~&.)/ JT„
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where

J.=Tr(A,A.)+det(A. +A.)

and Ii is the first-order modified Bessel function.
The above results are gauge invariant, local but not

bilinear in the fermion fields.
Now I briefly discuss the renormalizability for the

nonlinear action in lattice perturbation theory by follow-

ing the method of Kawai, Nakayama, and Seo." I
define Eg, Eg, and Ef as the numbers of external lines of
gauge fields, ghosts, and fermions, respectively, Va, Va~,

and V„f as the numbers of gauge, gauge-host, and
gauge-fermion n-point vertices, respectively, and V„q as
the number of 4n-point fermion self-interactions, whose
coefficient is Mi, . In 2D, the superficial degree of diver-

gence D of a Feynman diagram becomes

2n

D=2 —
—,
' Ef —g (n —2)[V +V„s+V„)—g g kV„ t, .

n 3 n=l k 0

Because D decreases and becomes negative as Vs increase, this anomalous chiral gauge theory is renormalizable in two
dimensions. In four dimensions,

D =4 —(EG+Eg) —', Ef —g —g kV„k,
n=l k=0

and this shows that the anomalous gauge theory is also renormalizable in 4D.
In the remaining part of this Letter I show the perturbative result of an application to the chiral Schwinger model.

Note that the nonperturbative effect, which is most important and difficult, is not treated here. I make this calculation
to see that the method works well as a regularization for perturbation. An action of the chiral Schwinger model is

equal to S in (1) with L„„6U(1) and R„„=l. After integrating out the fermion field I get

S,&(A, e) =-g A:A. „+ a A. „—a A. ,+ a A. „—..&a.A. ,K+1 1 1, 1 1

+ e,a~A. „+ a~e, a„e„- e„~ ~a.A„, +sG,

where

d2p siil p„(2sill p„siil p)cos p„~=a~a„, L„„=exp[iaA, „], g, =exp[ie„], =
2

. ."+
4z " —~4 ~ (2z 2 F(p) F p

2

sin p =g„sjn2p„, F(p) =sin p+ rg„(I —cosp„)
2

It is noted that the above result is obtained by the fer-
mion one-loop calculation; A, „ is treated as the external
field. The nonperturbative effect of lattice U(1) gauge
fields is not considered here. Then I integrate the 8„
field in the range —~ & 8„&00 and get

S,tr(A) =—,g F""(n)—(a —m')F„,(n), (3)1, 1

4e n I ~v

where

2 g 2

m
4z K —

1

It is noted that the result (3) is gauge invariant. The au-

thors of Ref. 8 obtained the same result. The renormal-
ization ambiguity K of Ref. 5 (denoted as a there) now

can be determined by the action S(g). By the numerical
integration of K, I find that

m )0, foro&r ~r, ,

where r, =1.5. This shows that the theory has unitarity

!
in this range of r as well as gauge invariance: The chiral
Schwinger model is renormalizable, gauge invariant, and
unitary in this range of Wilson parameter r. The condi-
tion that 0 & r ~ r, is consistent with the condition that
0 & r 2 ~ 1, which is implied by the reflection positivity, '

and thus it shows that the reflection positivity is a

sufhcient condition for unitarity of theories.
If I add a gauge-invariant kinetic term for g„,

SH =
2 X[gnLn, pgqt-&+gn+&La, pgn

a a,p

I can identify g„as a Higgs field' and get Eq. (3) with

e (E+2H)
4x E+20 —

1

after 8 integration. This shows that the addition of SH
changes the mass for the gauge field, but in the present
case the difference can be absorbed into the renormaliza-
tion ambiguity of Ref. 5.
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Finally, I discuss the remaining problems. Since my
calculation for the chiral Schwinger model is only a per-
turbative one, we should study the nonperturbative eff'ect

by the strong-coupling expansion or the numerical
method. Furthermore, we should investigate theories in

4D since they are physically most interesting. It is, of
course, more dificult to analyze the theory in 4D even if
we have a good definition on a lattice. The most impor-
tant and difficult point is to investigate the continuum
limit. For example, since there is no apparent diff'erence
between anomalous and anomaly-free theories in my for-
malism, the diff'erence between them should appear in

their continuum limits. There are several possibilities:
Anomalous gauge theory may give a mass to the gauge
field even in 4D, as the chiral Schwinger model does, or
it may become trivial. The eff'ect of the Wilson term
may be nontrivial in the continuum limit even for the
anomaly-free case, perhaps even inducing a mass for the
gauge boson.

I would like to thank Professor Creutz for useful dis-
cussion and careful reading of the manuscript. I also
thank Dr. I-Hsiu Lee, Dr. T. Kashiwa, Dr. K. Harada,
and Dr. I. Tsutsui for useful discussion. This work was
supported by the U.S. Department of Energy under Con-

tract No. DE-AC02-76CH00016.

H. B. Nielsen and M. Ninomiya, Nucl. Phys. B1S5, 20
(1981),and B193, 173 (1981).

2K. G. Wilson, in Ne~ Phenomena in Subnuclear Physics,
edited by A. Zichichi (Plenum, New York, 1977).

3W. A. Bardeen, Phys. Rev. 184, 1848 (1969).
4A. Coste, C. Korthals-Altes, and O. Napoly, Phys. Lett. B

179, 125 (1986); S. Aoki, Phys. Rev. D 35, 1435 (1987),
5R. Jackiw and R. Rajaraman, Phys. Rev. Lett. 54, 1219

(1985).
6S. Aoki, Phys. Rev. D (to be published).
7D. Forester, H. B. Nielsen, and M. Ninomiya, Phys. Lett.

94B, 135 (1980).
SK. Harada and I. Tsutsui, Phys. Lett. B 183, 311 (1987).
9J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971).

' L. H. Karsten, in Field Theoretical Method in Particle
Physics, edited by W. Riihl (Plenum, New York, 1980);
J. Smit, Acta Phys. Pol. B 17, 531 (1986); P. V. D. Swift,
Phys. Lett. 145B, 256 (1984).

'H. Kawai, R. Nakayama, and K. Seo, Nucl. Phys. B189, 40
(1981).

'2S. Aoki, Soryushiron Kenkyu 64-5, 107 (1984).

2112


