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String Perturbation Theory Diverges
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We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling
constant and is not Borel summable. This divergence is independent of the existence of the infinities that
occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical impli-
cations of such a divergence.

PACS numbers: 11.17.+y

If perturbative string theory were to make sense,
string theory would have nothing to do with physical
reality, since there are many features of all perturbative
treatments of string theory that are not shared by the
real world. It is therefore important to determine the
range of validity of string perturbation theory, as well as
to develop nonperturbative tools that transcend it.

Much has been made of the fact that string perturba-
tion theory is a topological expansion, and that (for
closed-string theories) there is only a single "term" to
calculate at each order in this expansion. For this reason
it may seem unlikely that perturbation theory diverges.
After all, the ubiquitous divergences of perturbative ex-
pansions in quantum field theory arise because of the n!
number of n-loop Feynman diagrams. ' However, the
single h-loop string Feynman graph is integrated over all
of the moduli space of Riemann surfaces with h handles,
a complicated space over which we really do not have
much control, and therefore such naive statements have
dubious validity. Furthermore, string theory contains
within it, at low energies, ordinary field theory, which al-
ways yields divergent perturbative expansions. Thus we

might expect similar divergent behavior in string theory.
In this Letter, we prove explicitly that bosonic string

perturbation theory diverges at Pg"h!, where h is the
number of handles. This reassures us that perturbation
theory, for the bosonic string at least, has zero radius of
convergence. Even more, such an expansion is not even
(Borel) summable. We will argue below that this type of
behavior could be an indication of the nonperturbative
instability of the vacuum.

We shall consider the simplest amplitude, the partition
function, and we shall show that it grows factorially in h,
for large h. This is accomplished in two steps: (a) con-
trolling the behavior of the string integrand uniformly
over moduli space, so that we can give a lower bound on
the integrand, showing that the integrand does not de-
crease like I/h!; and (b) estimating the volume moduli
space for a given h, to show that it increases like h!, so
that we can derive a lower bound on the integral which
increases factorially in h.

We use the Selberg zeta-function description of the
string integrand, namely the partition function of the

bosonic closed string is given by cg Z(2)Z'(1) '
dpwp,

where Z(s) is the Selberg Z function, dpwp is the Weil-
Petersson measure on moduli space, c is independent of
the genus, and all other constants that grow geometrical-
ly with h have been absorbed into a redefinition of the
coupling g, As is well known, Z'(1) =det'(5) (6 is the
scalar Laplacian, and the prime denotes the removal of
the zero eigenvalue), and Z(2) is the ghost determinant.
One reason for our considering the partition function is

that it is a manifestly positive quantity, and hence one
can make unambiguous statements about the divergence
of the perturbation series. Our arguments can be ex-
tended trivially to the two-point amplitude for the trace
of the graviton at zero momentum, which is another ex-
ample of a real amplitude. We certainly expect that the
divergence of perturbation theory is, as in ordinary field

theory, universal and will occur in any string amplitude
and in any string theory.

As is well known, there are divergences in the bosonic
string because of the tachyon, and because of the dilaton
tadpole. These show up as bad behavior of the string in-

tegrand at points in moduli space where geodesics pinch
off'. These points constitute the so-called degeneration
locus. They give rise to infinities that are an indication
of the perturbative instabilities of the flat-space vacuum.
We remove these divergences by introducing a genus-
independent cutoff' on the minimum length of geodesics.
This restricts moduli space and renders the loop ampli-
tudes finite. We shall then show that the cutoff' h-loop
amplitude is bounded from below by h!, uniformly in the
cutoff'. The reason it makes sense to do this is that the
infrared divergences of the individual terms have nothing
to do with the h! growth of these terms and thus with the
divergence of the series. This is similar to the situation
in quantum field theory, where the divergences of pertur-
bation theory arise from diA'erent sources than the ultra-
violet divergences of individual terms in the series. We
are unfortunately unable to cope with the problems in-
troduced by fermionic degrees of freedom; after all, even
in ordinary field theory it is very hard to estimate the
divergences of perturbation theory in the presence of fer-
mions. We would expect, nonetheless, that a similar
divergence would arise in the case of the superstring or
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the heterotic string, where there are no infrared diver-

gences at all.
We first discuss bounding the string integrand. Note

that everything in this paper that relates to Riemann sur-
faces is described in terms of constant ( = —1) curvature
metrics. A will always stand for the area of the
Riemann surface; since we shall deal solely with compact
Riemann surfaces without boundary, A =2m(2h —2).
We shall be concerned only with the scalar Laplacian.

Recall that the Selberg Z-function form of the string
partition function arises from the usual g function

g(s)=tr(A ') = dt t' 'tr[exp( —ta)].1

r(s) ~

(We ignore the presence of zero modes for the mo-
ment. ) The function 8(t)—:tr[exp( —th)] is just the
trace of the heat kernel; application of the Selberg trace
formula to the heat kernel leads to McKean's formula3

Z'(s)
Z(s)

= (2s —1) dt exp[ —s(s —1)t][8(t) Ak(—t)].

Here, k(t) [=k(z,z;t)] is the heat kernel on the hyperbolic plane (evaluated at coinciding points). Explicitly,

J2 exp( —t/4) exp( —b /4t ) 1

(4rt ) " (coshb —1) ' 4«
1 +O(t) as t- 0+.

12m

We are interested in (1) as s 1 (or 2), and therefore
in the behavior of the integrand near t =0 and t =~ (for reflects the local properties of constant-curvature metrics
s 1). Let us first consider the short-time behavior of in two dimensions. A simple consequence of this fact is
the heat kernel. Define 8(t)=8(t) —1, where we are
subtracting the contribution of the trivial constant eigen- f(t) =8(t) —Ak(t) ——1+o(t")
function. Recall that

8(t) — — +O(t) as t —0.
4zt 12m

The coe%cients of positive powers of t in this asymptotic
expansion are integrals of polynomials in the curvature
tensor. For constant-curvature metrics, we can therefore
write the entire asymptotic expansion as 8(t)-A xp(t),
where p is entirely independent of the manifold, and only

for small t, where n can be made arbitrarily large.
We are staying away from the degeneration locus; by

a theorem of Schoen, Yau, and Wolpert, this implies
that the lowest nontrivial eigenvalue of A is bounded
away from zero, by a constant depending only on the
genus and on the length of the shortest disconnecting
curve on the surface. We denote this lower bound by
p= p(h) )0, so that 8(t) =O(exp( pt) ) for la—rge t.

We may now integrate (1), arriving at

d Z(s) d " dt
ln = — exp [ —ts (s —1)] [f(t ) —f(0)]

ds s(s —1) ds "o t

W oo t
[exp[ —ts (s —1)]—exp[ —ta (a —1)]I +C,

s
(3)

where a and C are constants that we have to determine. The form in which we have displayed (3) is one in which both

integrals on the right-hand side make sense. To determine the constants, we note that

dt a
[exp( —ta) —exp( —tb)] = —ln40 t b

and that Z(~) =1, arriving at

ln = — [exp[ —ts(s —1)]f(t)+exp( —t)].Z(s) ""dt

s(s —I) "o t
(4)

We may now take the limit s 1 since the right-hand side makes sense. In this limit, the left-hand side is just
lnz'(1).

We are interested in an upper bound on Z'(1) and a lower bound on Z(2). As mentioned above, we need to show
that the string integrand does not decrease too rapidly for large h. Equation (4) implies

f+ OO

Z'(1 ) =exp
— [8(t) Ak (t ) +exp ( —t )]—

0

2106



VOLUME 60, NUMBER 21 PHYSICAL REVIEW LETTERS 23 MAY 1988

Using (2), we break the integral into two parts, so that we have

Z'(I) (exp(e)exp —J" [0(t) A—k(t)+exp( —t)]
t

=C,c, exp —
g

B(t)dt "

This is enough for our purposes because 0&0. Hence,
apart from a factor that depends on h =2+2/4' in an
acceptable exponential manner, we conclude that Z'(I )
cannot become "too large" at large h. A similar analysis
of (4) at s =2 leads to

where K(8, e) and M(8, e) are constants independent of
the genus. This completes the desired lower bound on
the integrand.

We come now to the second part of our argument.
What is the volume of moduli space for surfaces? Clear-
ly, since we have shown that the string integrand is

bounded by c", to show that perturbation theory diverges
we must exhibit a factorial growth in h of the volume of
the moduli space of surfaces of genus h.

One way to construct Riemann surfaces is to use
trivalent graphs (i.e., graphs with three edges emanating
from every vertex) as glueing diagrams for pairs of
pants. These lead to distinct Riemann surfaces if the
pairs of pants all have short geodesics. It is known from
the work of Bollobas' that the number of isomorphism
classes of trivalent graphs without loops or multiple
edges increases factorially, i.e., is O(h!). Recall that the
Weil-Petersson Kahler form, in terms of length-twist
coordinates, is given by co =Pl dlAda, the sum running
over the 3h —3 geodesics associated with the decomposi-
tion of the surface into pairs of pants. This implies that
the Weil-Petersson volume of a small (hyper)annulus
(because we are excluding the degeneration locus) in

moduli space goes as c ",where c is a constant de-
pending only on the length of the shortest geodesic we in-

clude in the annulus and on the thickness of the annulus
(both of which may be chosen to be constants indepen-
dent of the genus). We conclude that the volume of
moduli space is bounded below by c " 3c'h!. This con-
cludes our proof that the h-loop bosonic partition func-
tion, cut off in the infrared, is bounded below by k'k"h!
and thus that the perturbative expansion diverges as
gg2"ht

The fact that every term in the series is positive im-

plies that the series is not Borel summable. In other
words the Borel transform of a series F(g) =gg"ft,
where ft, =h!, namely Fa,„,l(g) =gg"ft, /h!, is singular
on the real axis, which prevents us from recovering the
original function as F(g) = fo Fa„,i(gt)e ', without ad-
ditional (nonperturbative) information of how to in-
tegrate about the singularity. This is just as well, for if
string perturbation theory were Borel summable then
many properties that hold order by order in perturbation
theory would be true of the complete theory. This
would certainly be true of linear relations between S-

matrix amplitudes, so that we could prove, for example,
that supersymmetry could not be broken.

What is the origin and meaning of this divergence? It
is similar in form to the ever-present divergence of quan-
tum field theory. These can be seen to arise because one
is expanding the functional integral f 2)@exp[To(@)
+X;„|(@)]in powers of the interaction Lagrangean,
X;„,, which dominates the free Lagrangean Xo for large
fields no matter how small the coupling. Indeed, the na-

ture of the divergence can be deduced for a given

Lagrangean, say 2 =pKp+gp~, by considering the func-

tional integral for a zero-dimensional path integral

f dpexp[ —(pKp+gpt')], whereby we conclude that a
gp~ interaction leads to a perturbation series that
diverges as g( —g) "[(p—2)n/2]!. The divergence that

we have found, gg h!, is indicative of a g&3 interaction,
consistent with the form of certain string field theories.
A more physical interpretation of the divergence of the
perturbative expansion of quantum field theory is that of
Dyson, i.e. , that it is due to the instability of the theory
for negative (or imaginary) values of the couplings.
Indeed, the high-order behavior of the perturbative series
can be deduced from a semiclassical analysis of the vacu-
um instability for negative couplings. 9 It would be of
great interest to pursue this line of thought for string
theory.

What is the meaning of the fact that the perturbation
series is not Borel summable? In ordinary quantum
mechanics and in quantum field theory such a situation
is an indication of the instability of the perturbative vac-
uum. Thus, in most cases, a non-Borel-summable per-
turbation series can be traced to the existence of instan-
tons (which indicate vacuum mixing through tunneling),
or Euclidean bounces (which are an indication of the de-

cay of a false vacuum) or renormalons' (which are an
indication of ultraviolet troubles). This is reasonable,
since if perturbation theory is summable, one can sum it,
without nonperturbative input, and the vacuum should
be qualitatively correct. We therefore suggest that the
non-Borel-summable perturbative expansion of string
theory is similarly an indication of nonperturbative
effects that destabilize the perturbative ground state.
Since we might expect a similar divergence fo; the
heterotic string, we conclude that the enormous multi-
tude of classical heterotic solutions might all be unstable,
and that the truly stable (and perhaps unique) ground
state is picked out by the nonperturbative dynamics that
destabilizes them. It would be of great interest to ex-
plore this idea with the hope of identifying this nonper-
turbative mechanism.
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