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Primordial Origin of Nontopological Solitons
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We discuss the formation of nontopological solitons in a second-order phase transition in the early
Universe. Ratios of dimensionless coupling constants in the Lagrangean determine their abundance and
mass. For a large range of parameters, nontopological solitons can be cosmologically significant, contrib-
uting a significant fraction of the present mass density of the Universe.

PACS numbers: 98.80.Cq, 11.10.Lm

Nontopological soliton solutions of classical field
theories were introduced a number of years ago by
Rosen, ' and by Friedberg, Lee, and Sirlin. In the re-
cent literature, variations on this theme include Q balls,
cosmic neutrino balls, quark nuggets, and soliton
stars. Unlike magnetic monopoles and cosmic strings,
which arise in theories with nontrivial vacuum topology,
nontopological solitons (hereafter, NTS's) are rendered
stable by the existence of a conserved Noether charge
carried by fields confined to a finite region of space. The
minimum charge of the stable soliton depends upon ra-

tios of coupling constants, and in principle can be very
small (of order 1). Although the properties of nontopo-
logical solitons have been studied by a number of au-

thors, ' scenarios for actually producing such objects in

the Universe have not been discussed. In this Letter, we

consider the possibility of formation of NTS s during a

phase transition in the early Universe.
In the context of renormalizable theories, the sim-

plest NTS solution arises from the interaction between a
real scalar field o and a complex scalar p with Lagrange-
an X =

t 8„& t
+ —,

' (B„a) —U, where

U( t ei t, cr) = —,
'

Xi (o' esp) '+—h t y t
'(tT ap) '+ —

—,
' Xi(a —cap) 'oii+g t y t

'+ A;

the constant A is adjusted to give U=O at the absolute
minimum of the potential.

An important feature of this potential is the explicit
breaking of the discrete symmetry cr —o. driven by the
p-o coupling term. It is this term that requires us to in-
clude the cubic term for the real scalar field and the

term in the Lagrangean (even if they are absent at
tree level). Although these terms are traditionally
neglected in analyses of NTS's, as we discuss below,
inclusion of the cubic term is crucial for formation of sol-
itons in the early Universe. To understand the structure
of the NTS it is sufhcient to consider the limit g=0.
Notice that while p is massless at the local minimum of

t
the potential (o =crp), at the global minimum (o =cr-)
the field p has a mass mt, =h(o ——ctp) . Thus, a
configuration of massless p particles trapped inside a re-
gion with cr=cTp (the local minimum), separated from
the true vacuum o =o — by a wall of thickness —oo ',
will be stable. The larger mass in the tr=o- vacuum
prevents the p particles from escaping from the ct=crp
bag. In order to make this statement more quantitative,
we have to compare the energy of the soliton of charge Q
with the energy of Q free p particles propagating in the
o.=o. vacuum. This can be done by our introducing
the dimensionless variables A and B such that cr(t, r)
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=ooA(r), r/i(t, r) =2 ' ooB(r)e ' '. In terms of A and 8 the energy of the NTS configuration is

E = —,
' cog+4xkloo [(2kion) '(dA/dr) +(2kioo) '(dB/dr)

+ —, (A —1) +(h/k i)8 (A —1) + —, a(A —1) +C]r dr (2)

where

A-=o-/oo= —
—,
' (1+2a) —

—,
' [(1+2a) +8a] '

is the scaled o field in the true vacuum. For an estimate
of the energy we introduce the trial functions 8=(Bn/
r)sin(cur)8(R —r); A =1 (for r &R), A =(1 —A —)
&&e (' ~1/'+A — (for r» R). R is the "radius" of the
NTS, given in terms of co by mR =n. The above trial
functions satisfy exactly the equations of motion inside
the "bag." Using these trial functions we find that the
energy must satisfy the inequality

E ~ rrg/R+ —', zAR +O(R Xi/ cro). (3)

The three terms in Eq. (3) represent the kinetic energy
of the confined complex field, the false vacuum energy of
the NTS interior, and the surface energy of the wall

separating the interior from the true vacuum. For large

Q, unless kz/ki((I, the volume energy dominates the
surface energy. In this limit (which we will assume
henceforth) the NTS has radius and mass found by
minimization of the energy: R =(Q/4A)'/, M=(4z/3)
x Jgg 3/4A1/4

The next step is to compare the energy in Eq. (3) with
the energy of Q free p's in the true vacuum, Ef«,
=Qh '/ oo i A —

1 i. The NTS will be stable so long as
its energy is less than Ff„,. This occurs whenever

(on the assumption of spherical symmetry) where a =—Xz/

X], and we have used the definition of the conserved
charge Q =4zcucro f8 r dr. The constant C is

C= A—/kazoo = ——,
' (A'- —I)' —(a/3)(A ——I)',

minima o = + ao form with stable domain walls separat-
ing domains of degenerate vacua. These domain walls
soon dominate the energy density of the Universe, lead-
ing to contradictions with the observed isotropy of the
cosmic radiation background (unless on~ 10 MeV).
However, a small energy-density difference between the
two vacua (X2a0) causes regions of false vacuum to
shrink, leading to the eventual disappearance of the wall
system, with the Universe everywhere in the true vacu-
um. ' If the shrinking walls survive to suSciently low
temperatures, they become impermeable to the passage
of p particles from the false to true vacuuin. As a result,
if the number of p particles inside a contracting bag is
larger than Q;„, the outward kinetic pressure exerted on
the walls will halt the collapse, rendering the false-
vacuum bags (NTS's) stable.

As the temperature drops below T-T„ thermal fluc-
tuations of the o field become large, with regions rapidly
(compared with the expansion time scale) interconvert-
ing between (+) (false vacuum, o =+on) and ( —)
(true vacuum, o =o-). These IIuctuating regions typi-
cally have volume V~ =(2g), where g is the correlation
length. Below T, the transition rate between the two
vacua is proportional to exp( FM/T), wh—ere FM is the
free energy of the fluctuation, F~ =U~V», and U~ is the
energy barrier separating the two vacuum states (see
Fig. 1). When the temperature drops below the Ginz-
burg temperature, TG, the transition rate becomes less
than the expansion rate: The fluctuations "freeze out"

Q» Q,„=1231
A- —

1 h
(4)

If a =0.15, then A=0.6kioo, and we find Q~,„=18ki/
h Mm;„=46(k /h' )oo, Rm;„=1.7h '

cr '. The po-
tential for a =0.15 is shown in Fig. 1.

A few comments are in order. It is possible that quan-
tum corrections will give a small mass for the p particles
inside the bag (i.e., g&0). The above calculation may be
easily extended to cover this case, but here we will only
consider the case with massless particles inside the bag.
The condition that the soliton interior is in the false vac-
uum limits the range of allowed coupling constants, al-
though the range is not very restrictive.

Now consider the evolution of the vacuum through the
cosmological phase transition. In the limit h =X2 =0, the
reflection symmetry is exact, and it is well known that
once the temperature of the Universe drops below the
critical value (T, =2oo), infinite (and finite) regions of

b

b

0/ prp

FIG. 1. The potential of Eq. (1) with a =A&/X|=0. 15 and

(~Pi 1=0. A ——:o /crp, where o —-is the global minimum of
the potential.
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because there is insufficient thermal energy available to
drive the transition. " At this temperature, the correla-
tion length is' g(TG) =A, i 'TG '. If, for simplicity, we

approximate the potential below T=T, by its zero-
temperature form, we find that the Ginzburg tempera-
ture is Tg=V~U~, below this temperature the thermal
transition rate is exponentially suppressed. '

The relative probability of a fluctuation of the cr field
ending up in a (+) domain (denoted as pi) or in a ( —)
domain (denoted as p ) is very sensitive to the energy
difference between the two vacua (=A; see Fig. 1); the
false vacuum, with larger free energy, becomes progres-
sively more improbable as A grows. So long as the sys-
tem is in equilibrium, the relative population is given by
the Boltzmann formula, p+/p =exp( AF/T)—where
AF=AV& is the difference in free energies of the two
minima. This relation holds so long as the system is in

equilibrium, which requires that the transition rate be-
tween vacua be greater than the expansion rate, i.e.,T) TG. Below To the relative probability is frozen at
its value at TG, py/p =exp[ AF(TG—)/TGJ. Since
AF =AV~, and TG = V~UM, below TG, p i/p-
=exp( —A/UM). The argument of the exponent will de-
pend upon ratios of dimensionless coupling constants in

the Lagrangean.
The structure of vacuum domains below To is well

known from percolation studies. If the probability to be
in a given vacuum state is greater than a critical proba-
bility, p, (p, =0.31 for a simple cubic lattice), an infinite
cluster of that vacuum will appear. ' It is clear that the
structure formed in the phase transition changes entirely
if both vacuum domains or only one is above percolation
threshold. For example, in the case of exact degeneracy
(h =X2 =0) both vacua are equally probable, p+
=p —=0.5, and percolate, creating the familiar infinite-
domain-wall problem. On the other hand, if only the
true vacuum percolates, the Universe would be filled
with only finite clusters of false vacuum. Given the
above value of p„ the false vacuum percolates whenever
A/UM (0.8; for the potential of Eq. (1), this occurs for
a ~0.13.

First, consider the case where p+ & 0.31. Since this is
below percolation threshold, isolated bags of false vacu-
um are formed in the true vacuum "sea." If r is the

number of false-vacuum cells in a cluster [r=(L/2(),
where L is the cluster "diameter"J, the density of r clus-
ters per lattice site is known' from Monte Carlo simula-
tions to be f(r) =br ' exp( —cr) T. he constants b and
c are not known, but for p+ p„c 0, and for
p+ 0, b 0. For intermediate values of p+ we expect
both b, c-1. The number density of r clusters produced
at T=TG is then simply n(r) =f(r)//V~. Thus, the typi-
cal size of a false-vacuum bubble is L=2(, with larger
bubbles exponentially suppressed.

Once formed, the bubbles will be acted upon by
several forces: (1) a surface tension due to the domain
walls proportional to kP, which tends to straighten out
curved walls; (2) a vacuum pressure p„,=A, which acts
to collapse regions of (+) (false) vacuum; (3) a thermal
pressure p& due to the massless p's in the (+) vacuum
(under the assumption T ~ m~), which expands regions
of (+) vacuum. The evolution of the system of domain
walls and vacuum bubbles is quite complicated, and the
dynamics depends upon ratios of coupling constants Xi,
k2, and h. To elucidate a scenario for production of
NTS's, we will assume that two conditions are satisfied:
(i) TG (rn&, i.e., h is not too small, so that p particles are
trapped inside the (+) domains at the Ginzburg temper-
ature; (ii) p~=(x /45)TG p„„=A, i.e., k2 is not too
small, so that the thermal pressure due to the massless
p's in the (+) domain is always smaller than the vacuum
pressure. [If condition (ii) is not satisfied, the (+)
domains will grow and possibly percolate; for this case,
see the discussion below. J Given (i) and (ii), (+)
domains formed in the transition with Q ~ Q;„will sur-
vive to form stable NTS's, while those with Q (Q
will evaporate and disappear. Since large domains of
(+) vacuum are exponentially rare for p+ &p„ to first
approximation the only surviving domains have

min.

The typical number of relativistic p particles inside an
r cluster is N(r) =rri, ffn&V~, where ri, ff is the effective ex-
cess ratio of particles over antiparticles, ' and at TG,
n&=((3) TG/z Setting N.(rm;„) =Qm;„gives rm;„

Q '„k)/ri ff. We find that the ratio between the num-
ber density of NTS's with N(rm;„) produced at the
Ginzburg temperature to the entropy density, s =2m
&ge TG/45, is (with ge =100)

n (Qmin) n(r min)
0 3b jef

S ~ i gmin

' 3i2

eXP( Cgmin~1/rieff). (5)

The present energy density of NTS's (with Q =Q;„),pNTs =M;„n(g;„)contributes a fraction of closure density
' 3/2 1/4

QNTsho =5X10 b Q;„"
1

eXP( Cgmin~ i /jef) ~ (6)

where ho reflects the uncertainty in the Hubble constant (1)ho) —,
' ). For example, if we set b =c =1 and, as before,

take a =0.15, then

ONTshp =6 && 10 (hrI ff/A. i ) [tTo/(I TeV) Jexp( 18ki/h g ff).
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We consider two possibilities: (a) If the eA'ective asym-
metry' is comparable to the baryon asymmetry (ri, ff

=10 ) for the NTS density in the range 2x10
II ho~ 2, we find the constraint 1.7 x 10 &

X 1 /h
&2.5x10 for crp= I TeV, and 4.2x10 &kl/h &4.6
x 10 for ao = 10' TeV. The corresponding masses are
M~Ts=0. 2h ' TeV and MNTs=3x10 "h ' TeV. (b)
If g,~=1, for the NTS density to lie in the above range
requires 1.0&k|/h &1.2 for crp= I TeV, and 1.6&k|/h
+ 1.7 for oo =10' TeV. We note that since the density

is exponentially sensitive to the ratio Xl/h, for fixed t),ff

the range of parameter space for cosmologically
significant NTS's is rather narro~. By the same token,
the mass scale oo required to produce abundant NTS's is

essentially unconstrained.
Next we consider the case where both the (+) and

( —) domains percolate, 0.31 & p+ &0.69. In a given

region, the Universe will be composed primarily of two
interlocking infinite (+) and ( —) domains of complicat-
ed topology. The typical distance between the walls, as
well as the typical curvature radius, is initially L(t)
=2&(To).

In the evolution of the wall system, we assume that the
early motion of the walls is dominated by the surface
tension, which rapidly (compared to the expansion time)
acts to increase the wall separation L(t). This continues
until the vacuum pressure, p„,=A=

3 X2a'0, becomes8 4

comparable to the surface pressure, p, =
3 XP op/L, i.e.,

when L(t) =Lp —kl /4kzo'p. At this point, the vacuum
pressure begins to accelerate the walls into the false vac-
uum regions and the infinite (+) domains will initially be
pinched oA' into a series of finite (+) bubbles of typical
size Lo. ' The trapped charge in a typical bubble is thus

N(Lp) =(4z/3)Lpn&(TG) =8x10 rt,fr| /X2,

while, from Eq. (4), the minimum charge for a stable
NTS is Q,„=20512/h . N(Lp) will be larger than Q,„
if heal/ rI,'g/Xz &160. If condition (i) is imposed, h can-
not be too small. We also note that if h is much larger
than ki and X2, quantum corrections driven by the
h i p i (a —op) term might change the form of the clas-
sical potential, and so we assume that neither X2 nor X~ is

much smaller than h. With these assumptions, it is un-

1ikely that the charge inside a bubble of radius Lo will

exceed Q,„. If this is so, then as in the "below percola-
tion case" stable NTS will be formed from rare large
clusters consisting of many cells, and the only qualitative
diff'erence in above and below percolation is that the
effective cell size above percolation is Lp rather than g.
In the limit ) 2«k. i, UM =(kl/8)op, and ( =ap 'Ai

The fundamental cell volume above percolation is a fac-
tor of (Lp/g) = Xi /64X2 larger (above percolation
X2/ki « I ), and r;„, the minimum number of cells neces-
sary for a cluster to have N) Q;„, is correspondingly
smaller.
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