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Superconductivity from Predominantly Repulsive Interactions in Quasi One-Dimensional Systems
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We show that for a one-dimensional electron gas with strong repulsive electron-electron interactions
and a weak retarded attractive interaction, superconducting fluctuations can occur at high temperatures.
The dominant driving force for these fluctuations is the repulsive interactionsI Although the results are
for a one-dimensional model, a strong analogy exists between our results and the short-ranged
resonating-valence-bond picture of superconductivity.
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An old question which has been endowed with re-
newed urgency by the discovery of high-temperature su-
perconductivity is whether superconductivity can arise
from purely repulsive electron-electron interactions.
This is particularly so in light of the delicate balance
that exists in these materials between magnetism and su-
perconductivity. In this note we summarize the results
of a study of the properties of the one-dimensional elec-
tron gas with dominantly repulsive electron-electron in-
teractions and weak, retarded attractive interactions.
Our main results are as follows: (1) While divergent su-
perconducting fluctuations do not arise in the purely
repulsive model, the addition of even very weak time-
retarded attractive interactions produces a strongly di-
vergent superconducting susceptibility. Thus, the purely
repulsive model is unstable in the renormalization-group
sense to superconductivity; indeed, the larger the repul-
sion, the greater the superconducting susceptibility. (2)
The 1D superconducting state is comprised of fluctuating
valence bonds. (3) The excitations are solitons and re-
versed spin-charge relations. These results may shed
some light on the resonating-valence-bond (RVB) state
in 2D as well. (4) The effect is strongest for a nearly
half-filled band, although it produces a dimerized insula-
tor at exactly half filling; these results suggest that doped
polyacetylene could support high-temperature supercon-
ductivity if material with fewer defects could be made.

The model we start with is the standard' continuum
model of a one-dimensional electron gas with short-range
(i.e., screened) electron-electron repulsions, and a nearly
half-filled band. The one electron spectrum is linearized
about the Fermi surface, so there are two Aavors of elec-
trons: right-moving electrons with k near kF and left-
moving electrons with k near —kF. The parameters in
the models are the Fermi velocity VF, the chemical po-
tential p. (chosen so that p =0 for a half-filled band), the
bandwidth or ultraviolet cutoff E FhV k FaFnd the
scattering amplitudes for backward (with parallel or an-

g,'=(nv, ) 'g,',

g3 = (tt V, ) 'g, g3,

(lb)

(1c)
where gj' signifies a derivative of g~ with respect to
ln(EF) and g, =gt~~ —2g2. [When EF is of order p, the
scaling equations cross over to those of an incommensu-
rate system, which are the same as those in Eqs. (1) with

g3 set equal to zero. ] (iii) The spin-excitation spectrum

tiparallel spin), forward, umklapp, and the "one-branch"
scatterings gt~~, g~&, g2, g3, and g4, respectively.

For an extended Hubbard model, g~~~ g]~ g3 (U
—2V)a, and g2=g4=(U+2V)a. For any model which
is spin-rotationally invariant, g~~~ =g~&. Note, unlike
many other workers, we treat the half-filled and non-
half-filled bands on an equal footing by varying p; for
large p, g3 becomes unimportant. g4 is always relatively
unimportant; it simply produces a shift in the velocities
of the spin and charge degrees of freedom,
V, =VF(1+g4) and V, = VF (1 —g4), respectively.

This model has been extensively studied and a variety
of features of the solution are known. (i) So long as exci-
tations involving states at the band edges can be ignored,
the Hamiltonian can be reexpressed as the sum of a
charge and spin part; all physical correlation functions
are expressible as a product of a spin factor and a charge
factor. (ii) In the perturbative expansion for different
correlation functions, logarithmic singularities appear in

every order. Therefore one has to sum up at least the
most divergent contributions, e.g. , by applying the multi-
plicative renormalization group (RG). We study the
lowest-order scaling equations because they already es-
tablish the qualitative equivalence of the model with
weak bare couplings to some solvable models. The RG
flows are determined by our integrating out the states be-
tween EF and EF. The following scaling equations are
obtained so long as EF» p:

gI =(ttV, ) 'gt, (la)
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g2 =0, (2b)

g3 = (&VF) ' ( 2 glg3+ g3gl + 2l gag 3+2g lg3). (2C)

is gapless if gl) 0 and has a gap 6, if gl &0. The
charge-excitation spectrum is gapless if g, ) ig3i and

has a gap 5, otherwise. However, the Fermi energy lies

in the gap only so long as i p i
& A, . (iv) The ground

state has a divergent antiferromagnetic susceptibility if
A, =0 and A, & 0; it has a divergent singlet supercon-

ducting and/or charge-density wave (CDW) susceptibili-

ty if A, & 0 and it is not insulating. (v) The charge exci-
tations are spinless solitons, which can be thought of as

bosons with short-ranged repulsive interactions, and the
spin excitations are massive, neutral solitons.

In the half-filled repulsive Hubbard model, antiferro-

magnetie fluctuations dominate over superconductivity,
and even on doping the system fails to become supercon-

ducting. However, the following fact is conspicuous:
The scaling trajectory for the spin degrees of freedom
follows the separatrix between the 8„=0 and 6, &0
phases and eventually scales towards the unstable nonin-

teracting fixed point gill =gli =0. Thus one suspects
that a small additional attraction might make the trajec-
tories enter the 6, & 0 phase.

We consider the efl'ect of a weak retarded attraction
which could arise because of the coupling of the elec-
trons to almost any other degrees of freedom, since
second-order perturbation theory gives a negative contri-
bution to the low-energy states. We consider explicitly
two extreme models of electron-lattice coupling: (i) the

Su, Schrieffer, and Heeger~ (SSH) model, in which the
lattice distortions modulate the electron-hopping matrix
elements, which we will refer to as coupling to the bond

charge, and (ii) the molecular-crystal (MC) model, in

which an optical phonon couples to the electron site ener-

gy. The phonon propagator takes the usual Bose form,

D(k, co) =co (k)/ko —co (k)]. For an SSH coupling,
the coupling vanishes at zero momentum transfer, and so

we can approximate the dispersion by its value at the
zone boundary, cu(k) p=cp(2cpkF). For the MC mod-

el also, we can approximate the optical-phonon disper-
sion by an Einstein oscillator. Thus D is roughly k in-

dependent and its frequency dependence can be approxi-
mated by D(co) = —8(coD —cp).

Thus, we define retarded interactions gj analogous to
the instantaneous interactions gj. For the SSH model,

gl g3 & 0 and gq =0, while for the MC model,

gi — g3 — g2) o.
The one-loop scaling equations for this two-cutoff

model can be derived simply; the instantaneous interac-
tions g, [Eqs. (1)] are unaffected by the presence of re-

tarded interactions. The equations for the retarded in-

teractions gi are

gl = (7CVF) ( P glgl +g3g3

+ —,
'

g, g, +g(+g,'), (2a)

These equations are our most important result. They
differ from earlier results ' by the presence of cross
terms g~gk. The scaling equations for gl and g3 can be
combined to produce two separate scaling equations for

8+ =fi+f3-'
g'+ (zrvF) '((2 gl ~g3+ 2 gp)gW+gW], (3)

which implies, among other things, that if initially

gl = + g3, as it is for both the SSH and the MC models,
this equality is preserved by the scaling equations. In
addition, coD is renormalized because of the Peierls
softening '; for the SSH model,

c00 =c00(zVF) 'g+.

(5)

where g;(cop) and g;(cpp) are obtained by integration of
the scaling equations from EF to cop. (There is also a
small renormalization of the Fermi velocity which arises
from our integrating out the states with EF-cop )The.
result is that the properties of the system at energies
small compared to cop can be derived from a standard
continuum model with interactions g and bandwidth
Cg)0.

Several important physical consequences of the scaling
equations can be derived simply: (i) Even if the bare in-

There are several important consequences of Eqs. (2).
A positive derivative implies that gj scales toward large
negative values. For dominantly repulsive interactions,
the cross terms are the most important, since g~ &g~.
For the SSH model, the first term in Eq. (2a) is nega-
tive, while all the other terms are positive, while in Eq.
(2c) the first term is positive and all others terms are
negative. Thus, as gl scales to zero, and g, and g3 scale
to larger magnitudes according to Eqs. (1), gl, in partic-
ular, and g3 scale to larger magnitudes at a rate which is

proportional to the strength of the electron-electron
repulsion.

The perturbative scaling equations break down when

yi =—g&/zVF gets to be of order 1, and even the notion of
scaling equations becomes dubious; only in the vicinity of
the fixed point at gi =0 can we safely ignore the ir-
relevant interactions that are generated as we integrate
out the high-energy degrees of freedom. Faced with this,
one traditionally notes that the value of EF at which g~

gets to be of order 1 is a characteristic energy of the
problem which can roughly be identified as the gap h. In
the present problem, a crossover in the scaling equations
also occurs when EF -cop, where cop, the physical phonon
frequency, is defined by the expression cop=coD(cop),
where coD(EF) is the renormalized value of coD. We dis-
cuss here the case where cop & d„,A, . (The case d„& cop

will be treated elsewhere. ) When EF-cop, gi and gi
represent practically the same scattering process, and we

can approximately represent their combined action in

terms of a single interaction

g =g;(mp)+g;(mp),
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teractions are dominantly repulsive (i.e., gI» igI i ), if
c00/EF is sufficiently small, the low-energy properties of
the system will correspond to a negative gi. Thus, the
system will have a nonzero spin gap and the possibility of
divergent superconducting and CDW susceptibilities.
(ii) Because of the decoupling of the spin and charge de-
grees of freedom, the gap in the spin-excitation spectrum
is approximately independent of dopant concentration.
(iii) Despite the fact that the low-energy properties are
characteristic of attractive interactions, at high energies
E» top (or temperature), the fact that the bare interac-
tions are repulsive implies that the antiferromagnetic
susceptibility should be large.

To obtain explicit expressions for the correlation func-
tions, we must find a model along the scaling trajectory
which we can solve in a controlled approximation. Here
we can only sketch the results. The appropriate excita-
tion spectrum and the spin charge factors for each corre-
lation function of the standard model can be related'
(via bosonization) exactly to the solution of a massive
Thirring model

Vp=V =VF 4 (1+y4+ lo yc) po=t4

~0 ~c EFy3 gp/ttVF Y2
(1+y4+ 6 yc)

where yj =gJ/nVF are the dimensionless coupling con-
stants. The spectrum of this model for @0=0 has been
computed exactly by the Bethe Ansatz; however, there
are no exact expressions for the correlation functions.

In order to obtain the correlation functions of the sys-
tem one would like to follow the scaling trajectories until

they reach the solvable Luther-Emergy model, where
gp=0. When one does so, additional interactions may
arise, but their effect on the spin channel will be only
perturbative in X, where

X= (gp/2mVF )ln(EF/t3, ) « 1 (7)

since the spectrum has a gap ho. A similar statement
holds for the charge channel with the difference that
there is an additional set of excitations below the gap.
To treat them we linearize the spectrum around p [this
gives a Fermi-velocity renormalization Vp=V, (p —d„)/

HMT = dx y'(x) [—t Vpn, 8„+cpa, +pp] y(x)
l%—

gp „dx yIt(x) yj(x) y2(x) yI (x), (6)

where for the spin degrees of freedom the parameters in

HMT take the values

Vo= Vs =VF 4 (1+ lo yIII)

~0 =~s =EFy]»

and

gp/&VF 2 (1+ 4 yIII)i

while for the charge degrees of freedom,

scow-t3. , (E*/kT)

where the exponent is

(9)

1+y4+ —,
'

y,

1+y4 —
2 yc

(10)

The form of Eqs. (8) and (9) is ensured by the mapping
to the Thirring model; however, our ability to calculate
8, quantitatively in terms of the parameters of the origi-
nal model is limited. Since we must scale until X& 1

while
i y, i

& 1, hence —,
' & 8, & 1—the CDW suscepti-

bility is thus the most divergent, but the superconducting
susceptibility is comparably divergent. It is easy to see
as well that the stronger the bare repulsive interactions,
the larger 6, and so Xss. 6, depends only relatively
weakly on the strength of the retarded interactions. To
get a genuine superconducting transition we make the
standard arguments that the presence of weak interchain
coupling will cause a transition at a temperature at
which Zss gets sufficiently large.

We now comment on the analogy between the present
results and the resonating-valence-bond (RVB) theories
of high-temperature superconductivity. Two classes of
RVB states have been studied: (1) the original RVB
state of Fazekas and Anderson which is the prototypical
short-range RVB state (SR-RVB) and was explicitly
characterized in the context of superconductivity by
Kivelson, Rokhsar, and Sethna'; (2) the generalized
RVB state of Baskaran, Zou, and Anderson" which has
all-length valence bonds. Both describe quantum spin-

liquid states, but the former is thought to have a gap' '
to spin excitations while the latter is gapless. In either
case, the spin excitations are neutral spin- —,

' solitons
while the charged excitation are spinless. ' ' For the
half-filled band there is a Mott gap in the charge-
excitation spectrum which is destroyed on doping. While
the majority of the calculations involving the RVB state
have been carried out for the simple Hubbard model, it
has been realized from the outset" that weak additional
interactions, e.g. , further-neighbor interactions which
frustrate the Neel state, or electron-phonon interactions,
may be necessary to stabilize the RVB state. Thus, there
is a close correspondence between the excitations of the
RVB state and those of the one-dimensional electron gas
with gI, g, & 0 and g3 & 0: The excitations are solitons
with reversed charge-spin relations, there is a strong ten-

dency toward superconductivity below the degeneracy
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A, ] and this leads to a massless Thirring model (HMT
with 60 =0) with bandwidth cutoff EF* =

i p i

—6„
which is solvable via bosonization. Taking over the
known correlation functions, ' we obtain for T
& min [A„EF] the superconducting susceptibility

Xss-W'(E*/kT) '

and the incommensurate CDW susceptibility
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temperature of the holes (suggesting they are bosonlike),
and the state is stabilized by electron-phonon coupling.
As in the SR-RVB state, and in contradistinction to the
Baskaran-Zou-Anderson state, there is a gap to spin ex-
citations. Of course, for g ~

)0, the same reverse
charge-spin relations exist but there is no gap in the
spin-excitation spectrum; unfortunately, neither are
there divergent superconducting fluctuations. This com-
parison lends modest support to the SR-RVB analysis in

two dimensions; we stress, however, that resonance is

very much more limited in one dimension than in two,
and the gap could be dependent on dimensionality.

In another communication, ' we discuss in detail the
relevance of our results for actual quasi one-dimensional
materials, especially doped polyacetylene. Here we con-
clude by making a few speculations: Undoped polyace-
tylene has a bond-charge-density-wave ground state,
which implies that it is in the regime gl, g, (0, and

g3 )0, although it is probably not true that the
electron-electron interactions are strong compared to the
electron-phonon interactions. (For our purposes, this is a
minor point. ) For doping concentration x between 1%
and 5%, polyacetylene has been observed to have a
reasonably high, roughly temperature-independent con-
ductivity, but vanishingly small Pauli susceptibility,
suggesting spinless charge carriers. The solitons are
known' to have eA'ective mass m*=3m„so that for
x between 0.01 and 0.05, the degeneracy energy E
=[(hz) /2m ](x/a) varies from 25 to 700 K. Thus,
there is the intriguing possibility that moderately doped
polyacetylene is in the SR-RVB-like state we have
characterized, and is prevented from being a high-
temperature superconductor only by the high degree of
disorder in currently available materials, or by the weak-
ness of the Josephson coupling between chains.
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