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We study the effect of Coulomb interactions on the onset of superconductivity with increasing inter-
grain coupling in granular systems at T 0. We show that in three dimensions (3D) the onset transition
is described by Euclidean scalar electrodynamics, and so can be either first or second order, depending
on parameters. A renormalization-group analysis indicates that in 2D the transition can either be first
order, or second order with 3D-XY-like critical behavior. In 1D Coulomb forces are shown to destroy
the superconducting state.
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In granular or amorphous superconductors, the onset
of superconductivity with increasing intergrain coupling
can be viewed as a phase transition at zero temperature.
This transition has been carefully investigated in recent
experiments' wherein the thickness or normal-state
resistance of thin disordered films is systematically
varied. One such study found a transition which was
continuous, as measured by film resistance, and exhibited
apparently universal critical behavior.

A standard model for such systems consists of a regu-
lar array of Josephson-coupled grains. The model allows
for quantum fluctuations of the phase of the order pa-
rameter on each grain. In d space dimensions this mod-
el exhibits a T=O superconducting transition in the
universality class of the (d+1)-dimensional XYmodel. '
Satisfactory comparison with experiment, however, re-
quires incorporating into the theory several important
complications, notably disorder, dissipation, and long-
range (Coulomb) interactions. sb The purpose of this
Letter is to elucidate the important eff'ects of Coulomb
forces on the superconducting onset transition at T O.

We study a model granular superconductor which con-
sists of a fluid of charged bosons, representing the Coop-
er pairs, hopping on a regular lattice. Our main results
follow.

For any dimensionality d ~ 3 the long-range I/r po-
tential is, to lowest order in the interaction strength, a
marginal perturbation about the (d+ I )-dimensional-XY
fixed point characterizing the onset transition of the
short-range model. In d=3 the I/r potential is margin-
ally relevant; the transition is described by Euclidean
scalar electrodynamics, a theory believed to exhibit ei-
ther first- or second-order transitions, depending on pa-
rameters. In d=2 the Coulomb force is marginally ir
relevant For som. e range of parameters the transition is

3D-LY-like, though for others it can be first order. In
particular, amorphous (or homogeneous) films should
tend to exhibit first-order behavior, whereas a continuous
transition is expected in the extreme granular limit. This
is consistent with the trend seen experimentally. ' Fi-
nally, in d 1 the I/r potential is marginally relevant
again, and actually destroys the superconducting state,
even at T=O.

Our model consists of charged bosons hopping on a
lattice of grains (with unit lattice spacing) and interact-
ing with the quantized electromagnetic (em) field. The
grand canonical partition function (at T=0) can be ex-
pressed in a path-integral representation as a trace over
a complex c-number Bose field, @;(r), and the vector
potential, A: Z =Tr~ ~exp( —S), with an action (hI, 1)'

(la)

(lb)

An interacting Bose fluid in the continuum will in

general exhibit only one fluid phase at T=O—the su-

perfluid. The presence of the lattice (the grains) in (1),
however, permits an additional (normal) phase at T=O,
provided pp is rational (i.e., commensurate with the lat-
tice). In particular, for integer pp, as will be considered
in this Letter, (1) is expected to exhibit a T=O transi-
tion between a (normal) Mott insulating state and a
superfluid state as the ratio tpp/e is increased. With

purely short-ranged interactions, this transition exhibits
1 ~ dkdS. (A) =— di, (k'+') IA(&, rv) I

' («)=
—,. (, ).+1

S= dr+@; 8,@;—„drH(@,A)+S, (A),

H = —r g (e' "@;@i+c.c.)+g Vp (N; pp)(NJ —pp). —
&ij) /J

Here N; =@;@; is the boson density on the ith site, V;,
represents the (static) Coulomb interaction, e /I i —j I,
with Fourier transform V(k)-e k ' for d ) 1, and

po is a neutralizing positive charge background. The
fluctuating transverse em field A is coupled to the bosons
in the usual way, with A;i =e f A. dl. The trace over
A is taken in the Coulomb gauge, V A=0. The associ-
ated photon action is then simply

208 1988 The American Physical Society



VOLUME 60, NUMBER 3 PHYSICAL REVIEW LETTERS 18 JANUARY 1988

(d+1)-dimensional-XY-like critical behavior. Thus,
for example, the Mott gap Eg vanishes at the transition
with the XY correlation-length exponent v. This gap
controls the activated conductivity [exp( Eg—/kaT)] in

the insulating phase. As argued below, however, the
critical properties are more complicated when long-range
Coulomb forces are present.

The very existence of the T=O onset transition re-
quires the presence of interactions (i.e., e /tpp- I ); thus

the transition is not accessible to perturbation theory in
e. [This can be verified directly from (1).] It is there-
fore desirable to derive an alternative form for the
effective action. The substitution +;=

I @; I exp(ip;) in

(lb) makes it apparent that amplitude fluctuations about
the most probable value, I@I =pp, are greatly sup-

pressed by the interaction term. One may therefore ex-
pand I@I about Qpp to quadratic order and integrate

t

out the amplitude fluctuations, leaving an action in terms
of the phase degrees of freedom alone, namely,

S= —,
' dr+ (V ');,p;p, —„dig J;, cos(p; —

p
—A; )+S, ,

IJ V

(2)

where JJ=J:tpp for —i and j nearest neighbors, and JJ=0 otherwise. Since 4;(r) is periodic in r with period
P—= I/kaT, the phase satisfies the boundary condition p;(P) =p;(0)+2am;, for integers m;. Note that in general (2)
should include the complex term ipp fg; p;. For integer pp, as considered here, however, the periodicity of p; implies
that this term vanishes. Thus, unlike (I), the action (2) is real.

This action can, alternatively, be obtained by our expressing in path-integral form the partition function associated
with the Josephson-junction- type Hamiltonian,

H= —, gn; Vjn~ —Juncos(p; —
pl

—A;~)+0, . (3)
ij &ij &

Here [p;,nj] ib;J, and pp is an integer; for general pp, n should be replaced by n —
pp in (3). Because of the boundary

condition on the phase, the eigenvalues of the operator n are integers and represent the deviation of the boson density
from the mean value pp.

In the superfluid state (large J), it is legitimate to expand the cosine in (2) to quadratic order, producing a Gaussian
kernel to V '(k)+ Jk, with the plasinon excitation spectrum to —Jk V(k). For short-range interactions, V(k =0)
is finite and to and k appear symmetrically, which is why the T =0 transition has isotropic (d+1)-dimensional-XYcrit-
ical behavior. Coulomb interactions make the kernel anisotropic in space-time, however, producing a potentially
different transition. To investigate this possibility, we first recast the action (2) in a form where standard techniques
can be applied. Introduction of an auxiliary on-site real field Ap;(r) and a complex field y;(r) allows, via the familiar
Hubbard-Stratanovich ' transformation, the decoupling in (2) of the fields p; and exp(p;), respectively, on different
sites i The parti. tion function is thereby rewritten in the form Z =Tr& A ~, „exp[—(Si+S2+S, )], where

(4b)

(sb)

Si= & „[e V(k) —1] 'Idol +
2 dr+(p; —eAo, ;), (4a)

k, Ol 2e2 4

S2= 2 dr+(J ');Je' "yr; (r)itri(r) —g dr[@;(r)e ' ' ' +c.c.].

In the following we allow for interactions of arbitrary range, i.e., V(k)-e /k for any v~ 0, corresponding to a real-
space potential varying as Ii —j I

. The 1/r Coulomb potential corresponds to o =d —1. Treating the last term in
(4b) perturbatively, one can now integrate out the [(p;)] to generate a cumulant expansion in the fields, iver;. Keeping
only terms up to 0(y ) and replacing the spatial lattice by the usual continuum with a high-momentum cutoff A yields
the desired field-theoretic representation Z =Tr~ ~, „exp( —S), where

S =So+ l „d'x «[I (&,—te&o) v I

'+
I

(& —teA) v I
'+r

I v I
'+u

I v I
'], (Sa)

So= —,
' „k I~pl +S

k, co

Only the leading small-k limit of the Idol term has
been kept in (Sb). This suffices for the study of the criti-
cal properties. We now consider the cases d =3, 2, and 1

in order.
For d =3 the static Coulomb interaction corresponds

to cr =2, whereupon model (5) becomes identical to the
theory of Euclidean scalar electrodynamics in four (i.e.,
3+1) dimensions. It is well known' that this model de-
scribes a 4D superconductor coupled to a fluctuating

transverse em field at finite temperature; as such it has
been studied via renormalization-group (RG) methods.
It has also been extensively considered in the context of
lattice-gauge-Higgs theories. The absence of a stable
fixed point of the perturbative RG originally suggested
the occurrence of a fluctuation-induced first-order phase
transition between the normal and superconducting
phases. Subsequent Monte Carlo studies show strong
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indications that the transition may, depending on param-
eters, be either first or second order, a tricritical point
separating these two regimes. However, the absence of
an accessible RG fixed point has so far prevented
identification of the universality class of the continuous
transition. The possibility of experimental observation of
T =0 onset transitions of either first or second order in

d 3 is an interesting one nonetheless.
In d 2 (or d 1) the very long transverse magnetic

penetration depth typical of experimental samples im-

plies that the coupling of the order parameter to the
transverse em field manifests itself only unobservably
close to the onset transition. " The physics is therefore
best described by our setting A equal to zero in (5), pro-
ducing a model where the "gauge" field has but one
component, Ap. Hereafter we consider only this sim-

plified limit.
To investigate the resulting critical behavior of model

(5) with A 0, first note that, for any d and cr, the mod-

el is invariant under the "gauge" transformation

y = yr exp[ieX(r)], Ap =Ap+ 8,), (6)

for any function X,(r). Now setting the charge e equal to
zero decouples Ap from y, reducing the y part of S to
the ordinary y representation of the XY model. Thus
the model has an isotropic (d+1)-dimensional-XY fixed
point at e =0. To study the stability of this fixed point
for small but nonzero e, imagine one's performing (still
for arbitrary d and a) a T 0 RG transformation' by
integrating out of the partition function all Fourier com-
ponents y(k, co) and Ap(k, co) with high (spatial) mo-

menta, A/b &k &A, with rescaling factor b &1. Re-
scaling fields, momenta, and frequencies according
to k k'b ', co co'b ', y(kco) =y'(k'co')b ", Ap

Apb ", we choose („, (~, and z to hold the coefficients
of k (Ap(, (8,y), and k ) y) fixed at —,'. The pa-
rameter z allows for the possibility of anisotropic scaling
in space-time. It is easy to see that, quite generally, the
transformed action S'(y', Ap) continues to satisfy a
gauge invariance of the form (6), but with a renormal-
ized charge e' b" e. Thus the sign of (~ —d deter-
mines the stability of the (d+1)-dimensional-XY fixed
point at e 0. The isotropy of this fixed point implies
z 1, whereupon, for cr & 2, the invariance of the
coefficient of k

~ Ap ~
immediately gives (since k, be-

ing nonanalytic, does not get renormalized) 2((~ —d)
—:1+cr —d. Hence, for all a & 2, the XY fixed point is
stable for a & d —1 (i.e., for sufficiently short-ranged in-

teractions), and unstable for cr & d —1. The physically
interesting Coulomb case, cr =d —1, is precisely margin-
al for all d & 3; a stability determination thus requires
more detailed RG calculations. Such calculations are
prohibitively difficult directly in d 2 where the XY fixed
point is not perturbatively accessible, but can be per-
formed in an e expansion about the upper critical dimen-
sion, d 3, and cautiously extrapolated to d =2.

When d =3 —e the marginal Coulomb case has
a =2 —e. More generally, one can write a =2 —e, and
perform a double expansion in e and t. . Using the above
rescalings one readily generates differential recursion re-
lations to lowest nontrivial order:

dw/dl =(e —e )w —w2/3,

du/dl=eu —10u + & wu —w /16.
(7)

FIG. 1. Flow diagram for T=O onset transition in d=3 —e
expansion. Separatrix (bold) divides fiows to unstable (u & 0)
region from those attracted to (d+1)-dimensional-A'Y fixed
point.

Here ~=e and I =lnb. A schematic flow diagram cor-
responding to (7) for the Coulomb case e =e is shown
in Fig. 1. Most of the points in the physically accessible
first quadrant flow off to negative values of u. Since
(5) is unstable for u & 0, this strongly suggests a
fluctuation-induced first-order ' onset transition. There
is, however, a wedge of thickness e along the u axis
which flows, as shown, into the XY fixed point at
w 0, u &0. Thus the XY fixed point is marginally
stable. The separatrix between these two regimes flows
into a (Gaussian) tricritical point at w =u =0. Although
the domain of attraction of the XYfixe point is small of
O(e), the assumption that this domain grows continu-
ously with e implies that, for d=2 (e=1), the XY fixe
points attracts some finite (-1) fraction of the first qua-
drant. Presumably then, the d=2 system can undergo
either a 3D-XY superconducting transition (for large
enough u), or a fluctuation-induced first-order transition
(for small u). Since u suppresses amplitude fluctuations
of y in (Sa), increasing u corresponds to increased
granularity (or inhomogeneity) in the film. Consequent-
ly, amorphous (or homogeneous) films should tend to un-

dergo first-order transition, whereas granular films
should exhibit continuous XY transitions. This is con-
sistent with the trend seen experimentally. ' It is of
course possible that additional stable fixed points with
different critical behavior occur in the region of the
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figure inaccessible to perturbation theory. '

For d =1 (1+ 1 space-time dimensions), methods
developed for treating the two-dimensional XYmodel are
more useful than representation (5). The idea is to fac-
torize the partition function into a product of a spin wave
and vortex contributions in the standard way. ' [To this
end it is convenient to discretize time in the action in (2),

and replace the cosine term by the familiar Villain
form. ' ] The vortex contribution describes a neutral
two-dimensional plasma with anisotropic interactions be-
tween charges in space-time. One then performs a duali-
ty transformation'" on this plasma. In the limit of large
vortex core energies the resulting dual model, with con-
tinuous time restored, is a generalized sine-Gordon
theory' with an action
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Here 8(x, r) is a scalar field and U the vortex fugacity.
For short-range interactions, V(k =0) is finite, and 3'S.

the model reduces to a sine-Gordon theory, with associ- 4M

ated Kosterlitz-Thouless transition. '4 For the 1/r in-
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teraction, V(k) is singular (-ink) at small k. A RG
calculation, perturbative in U, can nevertheless be per-
formed. Integrating out momenta A/b (k (A (A is the

Coupl
ultraviolet cutoff'), and all frequencies, one obtains the

tive p
first-order diff'erential recursion relation, t)U/t) l 2U.
Hence, in contrast to the short-range case, U always in-

creases under the RG flow: The Gaussian fixed line is tinup
unstable and the vortices are always unbound. The alge- in Re
braically ordered superfluid state of the short-range sSe

problem has thus been destroyed by the Coulomb in-

teraction. Physically, the Coulomb force suppresses
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charge (or number) fluctuations at long wavelengths,

thereby enhancing quantum fluctuations in the conjugate
7bC

variable —the order-parameter phase —and destroying
(Mc

the superfluidity. Interactions longer ranged than 1/r Fo
also wipe out the ordered state, whereas interactions
which fall off faster than 1/r are effectively short ranged,
producing the usual Kosterlitz-Thouless transition. tion o
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