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Prediction of Aharonov-Bohm Oscillations on the Quantum Hall Plateaus of
Small and Narrow Rings
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It is shown, by use of a Landauer-type formulation of the quantum Hall transport, that in small and
narrow two-dimensional rings, the Hall quantization of px, is accompanied by a finite, but small, pyx,
which exhibits periodic Aharonov-Bohm oscillations. These oscillations arise as a subtle consequence of
the possible elastic backscattering of the current-carrying electrons in narrow channels.

PACS numbers: 72.20.My, 72.10.Bg, 73.20.Dx, 73.50.Jt

Cutting a hole in a two-dimensional (2D) sample has
no effect on the phenomenon of quantum Hall effect
(QHE),! namely, the existence of plateaus of quantized
pxy and vanishing px,, even though one might naively ex-
pect some Aharonov-Bohm (AB) interference effects.?
This is an extreme example of a theorem (Prange® and
Laughlin®) which states that localized impurities do not
disturb QHE so long as all the extended states are occu-
pied. This partly follows from the fact that in the QHE
conditions only a forward scattering of the electron is al-
lowed, which causes no loss of current and hence results
in a vanishing (residual) resistance, pxc. In this Letter it
is shown that for small rings, however, it should be possi-
ble to see AB effects concurrent with QHE, because in
narrow channels the impurities can give rise to a back-
scattering of the current-carrying electrons. This back-
scattering is made possible by the proximity of the ex-
tended edge states carrying current in opposite direc-
tions.

Consider Fig. 1. The physical sample consists of an
ideal sample plus impurities, where the ideal sample is
characterized by a uniform confining potential, which is
taken, for simplicity, to be monotonically increasing as
one moves away from the thick line in Fig. 1. This po-
tential confines the electrons to a channel about the thick
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FIG. 1. Schematics of quantum Hall transport with the

physical sample enclosed in the dashed box.

line. The following discussion will be within the frame-
work of the recently developed Landauer-type formula-
tion for the treatment of elastic scattering in quantum
Hall transport.>® A zero temperature will be assumed.
Following Refs. 5 and 6, it is imagined that the physical
sample is connected through ideal leads to two particle
reservoirs, one on either side. The boundary conditions
are such that the reservoir on the left emits R electrons
(i.e., electrons moving toward right) up to energy u; into
all the available Landau levels (LL’s) and absorbs all the
L electrons (i.e., the electrons moving toward left) in-
cident on it, while the reservoir on the right emits L elec-
trons up to energy u» and adsorbs all the incoming R
electrons. Assume that g; > u,. Since the direction of
electronic motion is determined by the potential gra-
dient, there is a spatial separation of the R and the L
electrons. For a magnetic field in the positive Z direc-
tion, the R electrons are confined to the upper half of the
leads, while the L electrons are confined to the lower
half. The electron energy increases as one moves away
from the center (thick line), and the R and L electrons
with energies u| and u», respectively, define the edges of
the sample. Since the reservoirs emit electrons into all
the states below u; or uy, I am effectively only consider-
ing the quantum Hall transport when all the available
LL’s are completely filled, which is a condition for QHE
(quantized py, and vanishing pyy).

The localized scattering potentals which do not give
rise to backscattering are irrelevant to the following dis-
cussion for the reason mentioned earlier, and I replace
them by the ideal sample. The relevant impurities are
the ones which extend across the width of the sample
since they can backscatter the electrons near one edge
(1) into the empty states above uj at the other edge.
Such an impurity, for example, can be a bottleneck on
the ring, as shown in Fig. 1, where the two edges come
within a few magnetic lengths of each other, and thus
produce an enhanced reflection amplitude. The Pauli
principle forbids any scattering of electrons with energy
below u» since all the states below u; are occupied, and
only the electrons in the energy range u; < E <pu can
be scattered. I shall assume that p,— y1+, which is the
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limit of very small current flow, so that the transmission
coefficients are constant over this small energy range. It
can be shown’ that the electrons below u» carry no net
current, and that the current carried by the edge elec-
trons in the energy range u;<FE <u; satisfies the
correct quantization condition provided there is no
scattering. It is assumed that there is no backscattering
in the leads (indicated by their greater channel width
compared to the channel of the ring), and that there is
only one relevant scatterer on either branch shown at a
and b, with the transmission and reflection amplitudes
ta,ra, and tp,rp, respectively.

For simplicity, let us first consider the high magnetic
field limit so that only the lowest LL is occupied and the
problem reduces mathematically to a single-channel
problem, > since for a given energy there is only one in-
coming and one outgoing state on either side of the sam-
ple. If the transmission coefficient of the physical sample
enclosed in the dashed box in Fig. 1 is denoted by T\,
then the current is given by

1=(e/h)(‘u1_#2)Ttm, (1)

which leads to the correct quantization condition for py,
for perfect transmission (T, =1). The chemical poten-
tials of the R electrons on the right-hand side of the sam-
ple and the L electrons on the left-hand side of the sam-
ple are modified because of scattering.® These are given
by ui=pa+ (i —p2)Tiw and pi=p; = Tio(uy —u2),
where the chemical potential is defined to be the energy
such that the number of electrons (occupied states)
above it is equal to the number of holes (unoccupied
states) below it. Then

_MiTpi _pi—H _ h R 2)
Pxx el el ez Ttot,
MI—H) _ MI—H2 _ B
= = = (3)
Pxy el el e?

where Rio=1—To. Thus, although py, still remains
quantized, p,, becomes Ty dependent. On the assump-
tion of no inelastic scattering (or an infinite-range phase
coherence), the total reflection coefficient is given by

Tal'p
i(27¢/09)

2
le = s (4)
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where ¢o=hc/e and ¢ is the flux through the area en-
closed by the inner perimeter. With this reflection
coefficient, py, is oscillatory with period ¢o. The origin
of these oscillations is clear. The electron gets reflected
by first getting reflected at a to the inner edge of the
ring, then making one or many complete circles (each
time picking up an AB phase of 27¢/¢¢) and finally get-
ting reflected at b to the lower edge. An interference be-
tween these different paths causes AB oscillations in R
and hence in pyy.

According to Eq. (4) both r, and r, must be nonzero

for an observation of AB oscillations on the quantum
Hall plateaus. This may be somewhat surprising at first
sight for the following reason: Consider the case when
there is no backscattering in the lower branch of the
ring, i.e., r, =0. Then the electron can get transmitted
across a either directly or by first tunneling into the inner
edge, making n complete loops, and finally tunneling out
to the upper edge on the other side of . One would in-
tuitively expect these different paths to interfere and pro-
duce AB oscillations. However, since we know that the
electron must finally get transmitted across @, which im-
plies that the total transmission must be 1, there cannot
appear any interference effects or deviations from QHE
in this case.

Now let us consider the consequences of a finite phase
coherence length, L,. The probability of an electron’s re-
taining its phase memory after one complete circle is
exp(—L/L,) where L is the perimeter of the inner loop.
Thus in Eq. (4) the AB phase factor must be multiplied
by exp(—L/L,). Taking t,=t,=t, one gets to the
lowest order in R and exp(—L/L,)

poc =R21+2e Hrecos(20/00)], (5)

where T=|1|% R=1—T, and near perfect transmis-
sion is assumed so that R— 0. Thus small and narrow
rings are required for an experimental observation of the
AB oscillations, since these are suppressed by a large
value of L/L, as well as by a large channel width, which
implies R— 0. Some experiments on rings have been re-
ported® which do not show any periodic AB oscillations
on the quantum Hall plateaus, but these rings have large
L/L, as well as fairly large channel widths. During an
estimation of L, it must be kept in mind that the
reflected electrons are not in thermal equilibrium with
the sample, and are “hot.”

These considerations can be easily generalized to the
situation when many LL’s are occupied. Since, for
strong confinement, the edges of the different LL’s are
very close to each other (in space), it is a reasonable as-
sumption that because of inter-LL scattering all of the
LL’s will locally equilibrate to the same chemical poten-
tial —which reduces the problem effectively to a single-
channel problem. In principle, because of a small
difference in the fluxes enclosed by the inner edges of the
different LL’s (which are very slightly displaced relative
to each other, with the lowest LL edge enclosing the
smallest area), there will be as many periodicities as the
number of occupied LL’s, but in practice the difference
in the periodicities may be too small to be observed. Un-
like the case when only the lowest LL is occupied, now
Pxy 1s not strictly quantized in the presence of elastic
backscattering6 and will also show AB oscillations; how-
ever, in strong magnetic fields one expects the oscilla-
tions in py, to be much weaker than those in py.. Also,
until now I have only discussed noninteracting electrons,
but the physical description presented in this work can
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also be generalized to include electron-electron interac-
tion, and, in particular, to treat fractional QHE, by our
taking the scattering states in the (ideal) leads to be the
appropriately charged quasiparticles. '

There are several interesting differences from the ear-
lier AB experiments on normal metal rings and the low-
field experiments on semiconductor heterostructure
rings. In these experiments in the lowest order, the wave
function of the incident electron splits into two at one
end of the ring and rejoins at the other end producing
AB interference. The AB effect discussed here is a rela-
tively much weaker effect since it entails at least two
reflections, and in the QHE regime, when p,,— 0, the
reflection coefficient is very small (R— 0). It follows
that a nonzero value of p,y is necessary to see the AB
effect. A perfect transmission (R=0) implies an ab-
sence of AB oscillations, since then the current-carrying
edge electrons are completely unaware of the presence of
an aperature in the middle of the sample. Also, until
now we have completely neglected the aperiodic manifes-
tation of the AB phenomenon'® which involves an in-
terference between different paths an electron can choose
within one branch of the ring. The reason is that in the
QHE regime all the states of the LL’s are completely oc-
cupied which severly restricts the electron scattering, and
hence the number of allowed paths. Thus the aperiodic
AB fluctuation pattern should be suppressed, as also
found experimentally.® This means that the ratio of the
area of the annulus to the area of the sample, which
must be large to see the ¢¢ oscillations in the metallic
rings,!! is not an important parameter here. The mag-
netic field through the sample is not a nuisance, but rath-
er is responsible for the physics here. Moreover, the
relevant flux here is more precisely defined than in the
earlier experiments in which there is some uncertainty?
in ¢ with its limits given by the fluxes enclosed by the
inner and the outer loops of the ring.

Although I have only considered the zero-temperature
situation explicitly, it is clear that the AB oscillations
will appear even at finite temperatures so long as L, L.
A more serious assumption is that only the case of a sin-
gle scatterer on either branch of the ring has been con-
sidered; in case of many scatterers the (random) phase
factors coming from various paths will tend to cancel the
effect. Thus the best samples to see the AB oscillations
are ones in which the two edges come close only in a
small region on either branch. It should be possible to
make such samples with the presently available technolo-
gy. It should also be pointed out that the single-scatterer
model may be valid even for a narrow ring with a uni-
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form distribution of impurity scatterers, since it has been
argued '? that on the QHE plateaus, in general, only one
impurity dominates the backscattering process.

In conclusion, I have given a Landauer-type descrip-
tion of QHE in rings and have shown that in certain con-
ditions the near-zero p,, will exhibit AB oscillations,
while py, will remain more or less quantized. Crucial to
this prediction is the physical importance of the edge
currents for quantum Hall transport in narrow channels.
There has been some evidence for edge currents in nar-
row channels at low current values, notably by Kane,
Tsui, and Weimann.'? An observation of the predictions
made here will not only be further evidence in support of
the edge-current picture, but will also be an experimen-
tal proof of the validity of the Landauer-type formula-
tion of quantum Hall transport in which the elastic back-
scattering of the electrons is partly responsible for the
finite value or pyy, or, in other words, for the breakdown
of dissipationless transport.$
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