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Nonlinear Ion-Temperature-Gradient-Driven Instability in Low-Collisionality Plasmas
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A novel theory for the self-consistent evolution of a nonlinear trapped-ion temperature-gradient-
driven instability, based on the turbulent trapping of resonant ions in the electrostatic potential of the
waves, is proposed. Threshold-dependent, non-steady-state turbulence (nonlinear instability) is shown to
develop. The resulting anomalous thermal and particle transports act to reconfigure the equilibrium
temperature and density profiles in such a way as to return the system towards marginality. Implications
of the theory for present and future-generation fusion experiments are discussed.

PACS numbers: 52.35.Ra, 52.25.Dg, 52.25.Fi, 52.25.Gj

As present and future-generation toroidal-fusion ex-
perimental devices approach very low-collisionality re-

gimes (i.e., v+„v+;« I, where v+ is the ratio of the
effective collision frequency to the trapped-particle
bounce frequency), a class of instabilities associated with

ions trapped in the magnetic field inhomogeneity' are
theoretically predicted to set in and considerably impair
confinement. While the linear theory of these modes has
been developed in considerable detail, little if any treat-
ment of their nonlinear evolution and saturation has been

proposed In th. is Letter we report discovery of a novel

relaxation mechanism for the trapped-ion temperature-
gradient-driven mode, ' which gives rise to a nonlinear
(i.e., finite-amplitude) instability with a threshold on the
value of ri; =dlnT;/d Inn; (T; and n; are respectively the
ion teinperature and particle density). The relaxation is

basically a Fokker-Planck process whereby the diffusion

of a phase-space "eddy" of trapped ions in the turbulent
bath of fluctuations is compensated for by a drag, in-

duced by the polarization of the dielectric medium. If
this assemblage of ions remains trapped in the electro-
static wave for a time (r,„) exceeding the typical auto-
correlation time of the background turbulent spectrum
(r, ), then large anomalous transport will ensue which,

by modifying equilibrium profiles, acts to return ri; to its
marginal value.

The mode under consideration here' is triggered by
unfavorable trapped-ion drifts (i.e., a7d;to~; )0, where

cod; is the bounce-averaged magnetic precessional drift of
the trapped ions, and to~; is the diamagnetic-drift fre-
quency), and propagates in the ion drift direction-, thus

allowing the possibility for resonant interaction between
wave and particle (co=cod;). In the latter respect, as
well as the class of particles driving it, the mode is fun-
damentally different from the more conventional (fluid-
like) toroidal ri; mode. We undertake here to investi-

gate the nonlinear dynamics of the trapped-ion mode

from the perspective of turbulent detrapping of resonant
ions from the electrostatic potential of the wave. Our
approach is thus in marked contrast to an earlier work
which explored the nonlinear saturation of the mode due
to coherent trapping of the resonant ions. While the idea
of coherent trapping is an interesting one in its own

right, it is unlikely to be a faithful description of what
actually occurs in practice. Principally, this is because
the width of the modes is comparable to the spacing be-
tween them, so that nonlinear particle orbits can more
realistically be expected to be stochastic rather than spa-
tially organized. In view of the intractability of follow-
ing exact particle trajectories, we adopt instead a statisti-
cal approach and consider the self-consistent evolution of
the two-point correlation function of the trapped-particle
distribution function in phase space. Electron collisions
are the principal dissipation process here. The other po-
tential dissipation mechanism, namely, Landau damping
on the nonadiabatically responding circulating ions, is

negligible since bh;, ;„=O(rod;/to„) «1, where bh is the
nonadiabatic part of the ion distribution function, and
to„=v„/Rq is the transit frequency. Electrons are taken
to be sufficiently collisional (i.e., their effective collision
frequency, v,tr„greater than all other frequencies of in-
terest) to destroy strong, short-scale phase-space correla-
tion on a rapid time scale. Their response is therefore
laminar, and we focus attention on the nonlinear evolu-
tion of trapped ions.

We begin with the equation that describes the tem-
poral evolution of the ensemble-averaged two-point cor-
relation of the trapped-ion distribution function in phase
space. This is obtained upon multiplication of the
bounce-averaged nonlinear drift kinetic equation for
bh(1) (where bh is the nonadiabatic part of the ion dis-
tribution function, and the argument "1"denotes a given
point in phase space) by bh(2), ensemble averaging, and
symmetrizing the result. One then arrives at

[8/Bt+ vq; (E ~ t)/By i+E28/tly 2) +V ](bh(1)bh (2)) =1,

200 1988 The American Physical Society



VOLUME 60, NUMBER 3 PHYSICAL REVIEW LETTERS 18 JANUARY 1988

where ( ) denotes an ensemble average,

7'(Sh(1)bh(2)) = g g k'k "(2zm') [(exp[i(k" —k')yl —ikyp]bhk „(2)
m' k, k', k*', m, co', co"

x [6'pk (1)]Bhk ~ -(1))exp[2zim'n'q(1)]s&+(l~ 2)] (2)

is the nonlinear ExB triple correlation with k" =k'+k understood [the notation (1 2) stands for a second set of
terms identical to the first, but with arguments interchanged and complex conjugated, as appropriate], and

~ =(e/T, )(f(1))[(hh(2) aa(s(1)/at&+(bh(2) aha(i)/ay, &~.', +(1-2)]

is a source term which drives the evolution of the two-point correlation function. In Eq. (1),

cod; =(q/r)vd; —kp;vi, .G(s, 8p)/2R, v„(2T/m;) ', E =E/T;,

co+; (q/r)co+; =co+;[1+rt;(E—
& )], co+; = —kp;v„/2L„, L„=—(dlnn/dr)

G(s, ep) is a function of the shear and the poloidal turn-
ing point, T; is the ion temperature, q is the safety fac-
tor, s =rq'/q is the shear, p; =v„/0;, y =r(/q is the nor-
malized toroidal angle, k nq/r is the poloidal-wave
number, r is the minor radius, R is the major radius, and
m and n are the poloidal and toroidal mode numbers, re-
spectively. The notation f (dl/vii) . . denotes a
bounce average, and [ . ] signifies that the field inside
the brackets is to be evaluated at the rational surface
Bloch shifted away from the origin by 2zm'.

We take note of the fact that the physical process we
envisage entails a wave-particle resonance (co=cod;) at
which rate ions trapped in the wave are ballistically pro-
pagated. The evolution of the two-point phase-space
density correlation function can therefore be character-
ized as proceeding along two disparate time scales: a
slow, "average" time scale, determined by the ballistic

t

propagation time of particles in the wave, and a fast
"relative" time scale, at which rate these latter decorre-
late from each other. The physical content of the opera-
tors on the left-hand side of Eq. (1) is precisely this
decorrelation of two given phase-space elements in the
turbulent bath. This "detuning" process occurs because
of relative precessional (banana-center) magnetic drifts
of the two particles, and relative turbulent ExB diffu-
sion, as mathematically represented by the triplet non-
linearity. This physical picture is indeed what is borne
out when we make a coordinate transformation to wave
frame of reference (y+,E ~,r ~) =(yi, Ei,ri) + (y2, Ez,
r2), and use standard iterative techniques of strong-
turbulence theory to renormalize the triplet nonlineari-
ty. When this procedure is carried out, Eq. (1) reduces
to the following simple form:

+vd;E — —S—
2

(Bh(I)Bh(2)) =S.a -- a a'
t y — ay

Here, S-=2%[1—cos(kpy —+r /Ap)] is the re—lative spatial diffusion operator,

S=(nc/8) g (2+m) g„k' s g„(1)([B(S(1)]')„

(4)

(5)

is the familiar (renormalized) quasilinear diffusion operator which emanates from a one-point renormalized theory,
gk „=(—ico'+icod;E+r, ') ' is the propagator, r, =(kp2$) ' is the correlation time of the background turbulence,
and Ap= 1/kps and kp ' =r+/q(n ) 't characterize the mean-square spread of the phase-space eddy in the radial and
poloidal directions, respectively. The physical content of the decorrelation processes can be further distilled by calcula-
tion of the time rate of change of the stochastic divergence of particle orbits. If we focus on the second-moment
Langevin equations of stochastic motion, it is possible to derive an expression for the time rate of decorrelation:

rt 7 ln [2[kpvg; r,E + —,
'

(kpy +r /Ap)] —+ —,
'

(kpy —+rp/Ap) 'j.

Through its dependence on z„zt, is inversely proportion-
al to the mean square fluctuation amplitude. This has
the reasonable interpretation that the larger the fluctua-
tion amplitudes in the spectrum, the more rapidly the
particles "detune" from the waves.

Next, we shift focus to the process by which the fine-
scale granularity is regenerated. The formulation of the
problem derives inspiration from the physics of discrete-
ness as described by the Lenard-Balescu equation. Thus,

we decompose the distribution function into a coherent
and an incoherent response, Bhk „=Bhk' +8hk „. When
substituted into the expression for the source term, Eq.
(3), the coherent response will give rise to a term which
physically accounts for the relaxation of the average dis-
tribution function by diffusive mixing due to the tur-
bulent spectrum of ion fluctuations. The substitution of
the incoherent response accounts for the frictional drag
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exerted on the test trapped-ion "eddy" by the bath of turbulent fluctuations. As in the Lenard-Balescu case, momen-

tum conservation requires that same-species diffusion and drag balance. An expansion free-energy source is made ac-
cessible by the left-over piece in the polarization drag, which physically represents the Cerenkov emission induced by
the dressed-ion granulation as it moves through the plasma. This free-energy source provides the driving energy for
the incoherent Auctuations. After some tedious algebra, we obtain the following expression for the source:

4'=nogk . tto.
' to,'; ll + zt; (E+ —-', ) ll(imek / I ek I )&(cion/np)(Bh*/no))k „&f;(E+)),

w here bn =fd v Bh is the incoherent part of the density
fluctuations, ek =ej, +e$ is the dielectric function as
obtained from quasineutrality, i.e., ek ebg/T;=Bn/np
(in the absence of incoherent fluctuations, one recovers
the usual linear dispersion relation, eq =0), the super-
scripts e and i refer to electrons and ions, respectively,
and Imek, & 0. Two points are particularly note-
worthy. First is the fact that the source term is propor-
tional to electron dissipation. The basic physical reason
for this proportionality can be understood as follows: As
the ion distribution function relaxes by the scattering of
trapped-ion eddies down the average gradient, electrons
are impelled to respond in order to redress the charge
imbalance, and thereby maintain quasineutrality. Thus,
quasineutrality (and by extension, ambipolarity) con-

1

strains ion relaxation to scale with electron dissipation.
Secondly, the fact that I z01/zoo;-co&i/ei-co& I (eo
=r/R & 1 is the inverse aspect ratio) implies that the
source term is proportional to the free energy stored in

the radial gradient of the trapped-ion average distribu-
tion function. Thus, a (positive) source will be available
to extract energy from the equilibrium gradient through
the ion channel when zt;/zt; „(E+)) 1, where zt; „(E+)
=(

& E+) —'. Note that for any value of zt;, there will

be some energy range within which trapped-ion eddies
will contribute to the source term. This again is in
marked contrast to the predictions of the linear theory,
and suggests the possibility of a subcritical (i.e., non-
linear) instability. Our expression for the source terin
may thus be written in the suggestive form

2ttno+ k' tooi tziilzti cr(E+) I) (Imek g'~E / I ek ~',E I )&(~nlno)(bh'/no)&k &f;(E+)&.

It is the incoherent piece of the two-point correlation function which contains information pertinent to singular be-
havior at short separation. An equation describing its nonlinear dynamics can then be written down:

&8h (1)Bh (2) )= [tz«/(y„iz«+ 1)—z, /(y„iz, + 1)1$,

e
gg &Im—1 exp

g, „(I /-;
I ) I & J&k I I

where y„~ is the nonlinear growth rate. An approximate, closed-form expression for the nonlinear dispersion relation is
obtained upon our relating &bhbh) to &bnbh)k The res.ult of this exercise is

&/2

y i=z, ' 2 JV(k) (10)

A'(k) =to„dy exp( —iky ) dE (z„z,). —

Note that unlike linear theory, the growth rate here is amplitude dependent. The threshold condition (i.e., y„i=0),
however, is independent of amplitudes and depends only on global profiles (i.e., through rt;). This suggests that the
only mechanism by which this nonlinear instability may be quenched is by profile modification through transport pro-
cesses.

Estimates of the transport fluxes that may be expected to ensue can be derived by our taking appropriate velocity
moments of the nonlinear evolution equation for the equilibrium distribution function. The latter may be derived quite
simply by our noting that conservation of the phase-space distribution function along particle orbits constrains the evo-
lution of the equilibrium distribution function to balance exactly that of the fluctuating component, i.e., &f;)8&f;)/Bt
= ——,

'
8&Sf; &/Bt. The particle (I;) and thermal (Q;) fluxes are thus given by

T

r;
g

— ep iz i n no=(2e )3t2n it2T 3t21n.
K.olz)E++1+ ', g, l lq;/g;, „(E+-) 1l-

dE+E+ (11)
j + no no.di +

where we have made substitutions for e& ~ The integrals appearing above are analytically intractable. However, to
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(12)

motivate the scenario of proximity to marginal nonlinear stability, we make an order-of-magnitude estimate by invok-

ing a simple mixing-length argument for the two-point correlation function. We can then estimate an upper-bound

magnitude for the flux as

I; T2
3/2 gl dn;

5p
—1

v, (ks) rl; „(t to/rod; t )

where to~; = kp—;v„/2LT. . Two points emerge from the
above expressions. First, we conclude that the thermal
flux per unit temperature is larger than the particle flux
if t co/rod; t

& 1. When juxtaposed with the condition for
nonlinear instability, the physically relevant frequency
regime becomes —', &

t to/cod; t
& 1. Above —', , there is no

nonlinear instability; below 1, there is no possibility of
nonlinear saturation. The second point to note is that
the magnitudes of the fluxes are very large. Indeed, be-
cause of the ballooning structure of the modes, these flux

estimates significantly exceed corresponding ones for dis-

sipative trapped-electron modes. Taken together, these
two points suggest that with the onset of this nonlinear
instability, transport processes will set in and act to rap-
idly reconfigure the equilibrium temperature and density
profiles in such a way as to return g; to marginality.
Very large heating would be necessary to push rl; above

g; „,-so that we may expect g; to remain very close to its
threshold value. The experimental signature of this reso-
nant instability would be the appearance of electrostatic
turbulence centered on cod;, coinciding with the rapid
ejection of a portion of the trapped-ion population, until

such time as g; returns to marginality.
In summary, by following the self-consistent nonlinear

evolution of the two-point correlation function for the
trapped-ion distribution function in phase space, we have
derived conditions under which a nonlinear (i.e., am-
plitude-dependent) instability, with a threshold on rl;,
may occur. Any departure from this nonlinearly margin-
al state can be expected to lead to large levels of anoma-

t
ious heat and particle transport, which by modifying the
equilibrium temperature and density profiles, respective-

ly, act as a negative feedback mechanism, and return rl;
to its threshold value. In some sense, then, the nonlinear
instability is quite robust and accentuates the need for
pellet injection in the proposed compact ignition toka-
mak experiment and other reactorlike environments.
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