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Universality of Random-Matrix Predictions for the Statistics of Energy Levels
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Wigner statistics for correlations of matrix eigenvalues are shown to be a property of any matrix en-

semble with a density of levels and probability distributions for matrix elements that are smooth. This
justifies the universality of level correlations in generic quantum systems, while suggesting that level

widths and other eigenvector-dependent statistics are system dependent.

PACS numbers: 03.65.—w, 05.45.+b, 21.10.—k

Wigner argued that the statistics of energy-level po-
sitions of complicated systems, within an interval of
roughly constant expected density of states, p(E), is

determined solely by level repulsion. ' He introduced the
notion of ensembles of large matrices (Hamiltonians),
whose independent elements were Gaussian distributed,
and studied the statistics of their eigenvalue distribu-
tions. These Gaussian models were solved completely,
and the same statistics were later derived for more gen-
eral ensembles, including any smooth change in measure
on the energy continuum' [and, consequently, for any
smooth p(E)] and any fixed mean or variance for each
Gaussian random variable. Nuclear-level data have
continued to support this picture, 5 and further con-
firmation has come from atoms, molecules, electrons in

conductors, and theoretical studies of nonintegrable sys-

tems. '
In this Letter, we make two observations to amplify

Wigner's arguments. First, we show that all Hermitean
matrix ensembles whose probability weights are smooth
(in a sense we make precise in the text that follows) have
the same level statistics over intervals in which p(E) is

approximately constant. The probabilities need not be
Gaussian nor independent nor symmetric under some
overall orthogonal or unitary transformation on the ma-
trices. Second, if a single fixed matrix is added to each
member of a smooth ensemble, the new ensemble typi-
cally is smooth. Taken together, these two points suggest
that Wigner's statistics are generic for quantum systems
with many levels present in intervals of approximately
constant mean density of states. In particular, the level-

distribution statistics within such intervals are indepen-
dent of the dynamics and consequent level correlations
on much longer scales.

We first sketch some classic results: Level repulsion is
manifest in the Jacobian, Jtt[E;], for going from indepen-
dent matrix elements H;J to eigenvalues E; and rotations

ij ~

If only E's are observed, one integrates over a's and ex-

presses the probability measure as

+dH; P[H; ] +dE; J [E;]e (2)

For Wigner's Gaussian ensembles,

P[H] =exp{—tr(HH )]

and S[E]= gE; . P
—reflects the dimension of the

space of a' s; P =1, 2, or 4 if the Hermitean H's are, in

fact, relatively real, complex, or symplectic. The product
of energy differences can be written as an exponential
and interpreted as a pairwise-repulsive logarithmic po-
tential between energy levels in a one-dimensional sta-
tistical mechanics''; then S[E] is a potential energy that
depends smoothly on the level positions. All statistical
measures of level distributions can be expressed in terms
of n-level correlations, tt'„(xt, . . . , x„), the probability
densities describing the presence of levels at n particular
energy values. Only the part of expS[E] that is sym-
metric under permutations of the E; affects the P„. For
the Gaussian unitary ensemble, P =2 (as well as Dyson's
"circular" unitary ensemble, defined on a finite energy
interval with periodic boundary conditions), '

P„(xt, . . . , x„)=detK(x. ,xb),

where K(x„xb) is the nxn matrix whose entries are
a function K(x,y) evaluated at pairs of the points
xt, . . . , x„. Thus, for example, Pt(x) =p(x) =K(x,x)
and P2(x,y) =p(x)p(y) —[K(x,y)] for the connected
P((x,y) = —[K(x,y)] ]. In the limit of large matrices
with P =2, K(x,y ) approaches

sin [p((x+y)tt2) tt(x —y)]/tt(x —y).

The P„of the P =1 and 4 ensembles can be expressed in

terms of products of oscillatory functions that decrease
with separation like

~
x —

y ~

', but the detailed forms
are more complicated.

The above results for the P=2 Gaussian ensemble
were generalized-' to allow S[El in Eq. (1) to take the
form

(4)
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where p(E) is any function of a single variable that is
smooth on the scale of the expected mean level spacing,
p(E) '. In particular, the consequent P„are given by
Eq. (3), and K(x,y) assumes the same limiting form as
above if (1) the p(x) that follows from p(x) satisfies

p dp/dx «1, ensuring there exist intervals with an ap-
proximately constant p that contain many levels; (2) all
the points x; are within an interval small compared to
the scale of variation of p(x) and p(x); and (3) the en-
ergies x; are expressed in units of p(x) ' appropriate to
that interval.

If there are of order N levels within the scale of varia-
tion of p or p, then the deviations from universality are
O(1/N). Analogous results are presumed to hold for

P = 1 and 4. This is particularly plausible in the

language of the one-dimensional gas for which P is the
strength of the pairwise logarithmic repulsion. We
proceed with P=2 because the explicit forms are far
simpler and we need the above result as a starting point.
And we likewise conjecture that the result we establish
holds for a continuous range of P including 1 and 4.

The proof of the above assertions for P =2 ensembles
follows closely one of the methods of exact solution of
the P=2 Gaussian ensemble. One notes that for P=2
the Jacobian in Eq. (1) is the square of the Vandemonde
determinant, det(Ej '), i,j =1,2, . . . , N. A factor of
exp[ —p(E;)/2l can be absorbed into each row, and then
rows can be combined to yield a set of orthonorrnal func-

tions, pj(E). The P„are then given precisely by Eq. (3)
with

IN+ i(E)PN(E ) 4N(E)IN+1(E
j=l E —E'

The universality follows from the fact that, for large j
over limited intervals, all sets of orthogonal functions pj
are approximately sinusoidal.

The freedom to choose p in Eq. (4) allows one to con-
struct ensembles with any a priori desired smooth densi-
ty p, and all such ensembles have the same level statistics
within dense intervals of roughly constant p. However,
choosing p to fit a given p also uniquely determines
the very long-scale level statistics. We now prove that
Wigner's statistics hold under even less restrictive con-
ditions. In particular, any smooth function f(E l,
E2, . . . , EN) can be used for S[E] in Eq. (2), and, un-
der conditions (1), (2), and (3) above (if we replace p
by f), the P„'s and E assume their universal forms.

The following outline may elucidate the subsequent
sketch of our proof. Since we wish to consider a general,
smooth S[El, no closed form of the P„, analogous to Eq.
(3), can be given to be then examined as N ~. Rath-

l
er, we consider a general S[El as the sum of the simpler

g;p(E;) plus a general perturbation. The P„are ex-
pressed as a power series in the strength of the perturba-
tion, and we characterize the structure of each term in

the power series in terms of the known correlations for

Pp alone. We find that the power series only makes
sense if the perturbation does not change the density of
levels as determined by Pp alone. However, this restric-
tion represents no loss of generality, because the original

p and p were themselves arbitrary. Given that the per-
turbation does not change p, the task is to show that all
P„are unchanged [up to corrections of O(1/N)] within

roughly constant, dense intervals of p. To this end, we
first estimate the magnitude (in powers of N) of the vari-
ous terms that arise and then show that the sum of terms
in each given order of the perturbation vanishes as
N ~. Consider

S[E]=gp(E;)+k gp'(E;)+f(El, . . . , EN), (6)
t t

where p' is chosen so that the addition of Pp'+ f does not change p(x) as determined by Pp alone. It is sufficient that

(7)
" p(y;) " a(y, —x)II '

dy; f(yl, ,yN)Z
N ' ', -~ p&yi&

which follows from the standard mean-field' determination of p(x), where N =fdy p(y). By virtue of the results for
Eq. (4), it suffices to show that S[El in Eq. (6) gives the same P„'s as Pp alone —which we do to each order in the pa-
rameter k.

Consider X(Pp +f) as a perturbation on Pp. The change in any P„ to a given order in X is a sum of integrals of
products of the unperturbed P„, which are given by Eq. (3). For example, if f is a symmetric three-level potential,

f=Ph(E;, EJ,Ek), summed over i,j,k, then to O(X.),

P2(E„Eb) = [dE;]Jp[E;]exp gp(E;) g b(E, , E, )6(E,, Eb)— —
t ~ Jl J2&J I

I+~ g~ d a(E — ) '( )+ g ~ Ud, a(E, —,)h(. . .)
l l l, l 2, l 3 i ]
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The generic correction term to P„ involves its n argu-
ments x], . . . , x„and a set of integrated points zk, each
x; and z], appears twice as arguments in some K(z,z'),
and each z], appears once as an argument of p' or f; and
some terms contain 6 functions in place of E's, identify-
ing two points. The 6-function terms arise because the
sums over I's as appear in the example above are unre-
stricted, while the P„s are defined by summing j]&j2

ej„. In a useful diagrammatic notation, one can
represent the K's (and 8 functions) as lines connecting
the points x; and zk, two line ends (not necessarily from
different lines) terminate at each point; and the argu-
ments of ]]]' and f attach at the points zk. Only those
terms connected by factors of K(z,z') or f are needed in

computing the connected P„'. The universal behavior of
K(z, z') is limited by the above conditions (1), (2), and
(3). Since the integrals run over all zk, we assume that,
beyond the region given by (1), (2), and (3), K(z,z')
continues to decrease roughly like

~
z —z'

~

' or faster.
Because of Eq. (7), every occurrence of ]u'(z) is can-

celed by the otherwise identical terms in which p'(z) is

replaced by f, with one of its arguments (each in turn)
set equal to z, while all others are contracted with them-
selves via K(y, ,y, ) =p(y;). The remaining terms only in-
volve f, and each f must appear in ways other than that
just described. For example, two of the many such terms
which contribute to P((x,x') to O(X ) using the simple
three-level potential, i.e., f=g]]](E;,E~,Eg), are

and

K(x,z])8(z] z4)K(z4)x )K(x,z2)K(z2, x)K(z3,Z3)K(z5, z6)K(z6, Z5)

K(x,z])K(z],x)K(x', z2)K(z2, z4)K(z4, x')K(z5, z3)K(z3,z5)K(z6, z6),

each integrated with h(z], z2, z3)h(z4, z5, z6)dz] dz6 and each with its own combinatoric coefficient.
The sum of these remaining terms (i.e., the ones other than those that explicitly cancel the occurrences of p') van-

ishes in the desired limit, as we show in two steps:
I. Each individual remaining term is at most O(N ), which can be seen as follows. The overall magnitude of p' and

f is set by our requiring each separately to alter p by a position-dependent factor of O(1); far smaller is uninteresting,
while far larger would totally dominate over level repulsion and corresponds to a diff'erent problem. dp'(x)/dx enters
linearly in the mean-field equation for p and must be O(l) relative to p. The smoothness assumption on ]]]' and f states
that their variation (and that of p) is characterized by a long length L in units of p, which we henceforth adopt.
Thus, p'/L is O(1). A simple estimate of the magnitude of any particular term among the corrections to P„would have
an additional L for each occurrence of ]]]'. [The consequent L" that appears in O(k") in the absence of the compensat-
ing fmakes the present method insufficient for establishing the universality under smooth changes in p. ] For example,

„dz dz'p'(z)p'(z')K(x, z)K(z, z')K(z', x')K(x', x)

is O(L) times greater than

&
dz p'(z)K(x, z)K(z, x')K(x', x) [= dz]dz2dz3h(z], z2, z3)K(x,z])K(z],x )K(x', x)K(z2, z2)K(z3, z3)

in our simple three-level potential example]. To make
these and our subsequent estimates, one must require
that the z integrals exist. The mathematics is simple if
one takes —~ & z; & ~ and assumes that f does not

grow at infinity and p is integrable, or, more physically,
one may assume that the z; are limited to a finite interval
which contains a large but finite number of levels. The
occurrences of f that cancel p' therefore count similarly.
If any one of the self-contracted [via K(y,y)] arguments
of f is instead connected via K's to some other point or
points, the magnitude of the resulting term is reduced by
1/N or 1/L, where N is the integral of p. N/L =O(1) is
the only case of interest. Hence, to any order in X, each
term remaining, after the cancellation of p' by part of f,
is at most O(1).

II. To any given order in k, the sum of the remaining
connected correction terms, each term of at most O(1),
to each of the P„' is O(1/L) for ~x —

y ~
=O(1). This

cancellation occurs because a constant p' or f, no matter
how large, must give zero net change in any P„', and the
cancellation can be seen explicitly as follows: Each
correction term is of the form of a set of m integrated
points, z], . . . , z, connected by K's (or 8 functions) into
loops each containing at least one of the x s and a set of
other points, variously connected by K's to each other
but not connected by a string of E's to any x;. The two
sets are connected by factors of the smooth f. The sum
of all terms with m points in the containing x; loops has
a product form: the sum of all possible m-point loops
(with various orders, 8 functions, and topologies) in-

tegrated with the sum of all possible "other points,
" as

described above. Integration over these other points pro-
duces a total weight factor g(z], . . . , z ), smooth with
scale L, which includes all f's and is integrated against a
sum of products of K's. Each term in the set of integrals
over the z; is no larger than O(1). For example, the
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m =2 piece of P((x,x') is

„dz dz'g(z, z') [[K(x,z)K(z, x')K(x', z')K(z', x) —46(x —z)K(z, z')K(z', x')K(x', x)

+ 2K (x,z )K (z, z ')K (z ', x ')K (x ', x ) —K (x,z )6(z —z ')K (z ', x ')K (x ', x )

+8(x —z )K(z,z ') B(z ' —x ')K(x ', x ) +8(x —z )6(z —z ')K (z ', x ')K (x ', x )
—K(x, z )K(z, x )K(x ', z ')K(z ', x ') —6(x z)K—(z, z )6(x ' —z ')K(z ', z ')

+28(x —z)K(z, z)K(x', z')K(z', x')+(z z')]+(x x')I/2.

The region of integration for which any z; is O(L)
away from the x; is further suppressed by 1/L because of
the fa[loA' of K. In the remaining region where all z; are
near the x;, g(zl, . . . , z ) is approximately g(x, . . . , x),
where x is an average position among the x;. In particu-
lar, the replacement of g(zt, . . . , z~) by g(zt, . . . , z~)
—g(x, . . . , x) would make each term in the set of in-

tegrals over z, O(1/L). However, the sum of all the
terms integrated over the full range of each z; with

g(x, . . . , x) must be identically zero because it is the
same as adding a constant to S[E], evaluated to O(1.).
Hence, the total eA'ect of p'+ f is O(1/L), thus complet-
ing the proof of the asserted independence of level statis-
tics on the exact form of the smooth part of the statisti-
cal weight, S[E], in Eq. (2).

We consider a statistical property to be generic if it is
unaffected by a wide class of perturbations. If a starting
ensemble with a probability measure [dH" ]expS[H" ]
and a smooth S[E] is transformed by addition of a sin-

gle, given eH' to each H", then the new measure

dH"'" expS '[H"'"] =dH"'" expS [H"'"—eH'].

If e is sufficiently small, nothing changes, while, if e is
sufficiently big, expS'[E"'"] approaches a product of 8
functions at the eigenvalues of eH'. Of interest is the
intermediate range in which the elements of eH' are
comparable to those of a typical H" . In terms of ei-
genvalues and rotations, the new measure is
ttL;"'"da Jplz"'"]expS[a 'E"'"a—eH'] where E"'" is
the diagonal matrix with entries E;"'". If S[H" ] is a
smooth function of the matrix elements in H" then, for
each a, S(a 'E"'"a —eH') is a smooth function of the
energy eigenvalues E;"'". The integrations over a thus
yield a new probability distribution dE;"'"Jp[E "'"]
&expS'(E"'") with a smooth S'. Therefore, Wigner
statistics for correlations of eigenvalues are generic, '
in that they persist even as the ensemble is subjected to
repeated random perturbations.

Statistical measures of eigenvector distributions,
which have been related, for example, to nuclear-level
widths, ' are not generic in this sense. The salient eigen-
vector features of the Gaussian ensembles (i.e., each
component statistically independent and Gaussian distri-
buted) are typically destroyed by shifting of the ensem-
ble by a fixed eH', as is evident from the new measure
exhibited above. In particular, eH' identifies preferred
directions and destroys the orthogonal or unitary symme-
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try. For a given physical system or systems, crude sta-
tistical measures may resemble the Gaussian-ensemble
predictions, but closer inspection will almost certainly re-
veal discrepancies. '
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