Comment on "Magneto-Optical Kerr Effect, Enhanced by the Plasma Resonance of Charge Carriers"

In a recent Letter Feil and Haas¹ present a simple model calculation for the Kerr effect metals and claim that this calculation proves that certain assignments of magneto-optical structures in f materials²⁻⁴ are not warranted. In this Comment we will show that both the model and the conclusions are incorrect.

Feil and Haas (FH) consider the equation for the complex Kerr effect

$$\tilde{\phi}_{\rm K} = \phi_{\rm K} + i\epsilon_{\rm K} = \tilde{\epsilon}_{xy} / \tilde{\epsilon}_{xx}^{1/2} (1 - \tilde{\epsilon}_{xx}), \tag{1}$$

where $\tilde{\epsilon}_{xj} = \epsilon_{1xj} - i\epsilon_{2xj}$ with j = x or y. Using for $\tilde{\epsilon}_{xx}$ the sum of a Drude and a Lorentz term and setting $\tilde{\sigma}_{xy} = \omega$ $\times \tilde{\epsilon}_{xy}/4\pi i$ = const, FH conclude that "a large resonancelike enhancement of $\phi_{\rm K}$ and $\epsilon_{\rm K}$ is expected in the frequency range where $\epsilon_{1xx} = 1$." This conclusion is incorrect as one can easily show by performing the same calculation as FH, but with different parameters. If we take, for example, $\hbar\omega_p = 7$ eV and $\hbar/\tau = 1$ eV for the Drude term and $\hbar\omega_1 = 3$ eV, $\hbar/\tau_1 = 3$ eV, and $\hbar^2 A_1 = 140$ eV² for the Lorentz term, no resonance occurs in the Kerr effect, although $\epsilon_{1xx} = 1$ near 1.6 eV. Equation (1) is not suited for the discussion of the Kerr effect because of its complex denominator. Removing the complex denominator leads to

$$\tilde{\phi}_{\rm K} = \frac{(A\epsilon_{2xy} - B\epsilon_{1}xy) + i(A\epsilon_{1xy} + B\epsilon_{2xy})}{A^2 + B^2}$$

with $A = 2n^2k + (n^2 - k^2 - 1)k$ and $B = (n^2 - k^2 - 1)$ - $2nk^2$. One now recognizes that $\epsilon_{1xx} = n^2 - k^2 = 1$ is neither a necessary nor a sufficient condition to produce a peak in ϕ_K or ϵ_K , but that A and B should be small to enhance $\tilde{\phi}_K$.

Besides this basic error in the discussion of Eq. (1) we note that the model of FH is also by itself unphysical. The assumption of frequency-independent and equal real and imaginary parts of $\tilde{\sigma}_{xy}$ (=1+*i*) is incompatible with the Kramers-Kronig relation. A constant σ_{1xy} leads to $\sigma_{2xy} = 0$. In addition, because $\tilde{\sigma}_{xx}$ and $\tilde{\sigma}_{xy}$ rely on the same optical transitions, these functions of ω are interdependent. The assumption of a Drude and Lorentz term for $\tilde{\sigma}_{xx}$ but a constant $\tilde{\sigma}_{xy}$ violates the selfconsistency requirement.

In the second half of their Letter Feil and Haas question our assignments of $f \rightarrow d$ transitions in CeSb² and uranium monochalcogenides³ and of intraband transitions in TmS and TmSe.⁴ In particular, FH claim that in CeSb ϕ_K peaks for $\epsilon_{1xx} = 1$. This is incorrect. $\epsilon_{1xx} = 11$ at $\hbar \omega = 0.5$ eV where we observe 14° Kerr rotation. The determination of an $F \rightarrow d$ transition energy of 0.4 eV in this compound is based on the occurrence of peaks in σ_{1xx} and σ_{1xy} at this energy and not on the basis of any peak in ϕ_K or ϵ_K .

FH also suggest that uranium chalcogenides have a steep plasma edge which might enhance the Kerr signal. This is again incorrect. In US, for example, $\epsilon_{2xx}(\omega)$ always exceeds $3.5.5 \ \phi_{\rm K}$ does not peak at the energy of the maximum in the energy-loss function at 4.25 eV. The $f \rightarrow d$ transition is assigned to a strong negative peak in σ_{1xy} at 1 eV.

Only TmS and TmSe display a steep plasma edge and we have been the first⁵ to show that this steep plasma edge gives rise to a strong resonance-shaped magnetooptical effect. As evidenced by σ_{1xx} and photoemission no $f \rightarrow d$ interband transition is expected in the neighborhood of this plasma edge and could thus possibly interact with magnetic-optically inactive intraband transitions as FH like to suggest.

We summarize: The model of FH is incorrect from first principles and $\epsilon_{1xx} = 1$ is not equivalent to a resonance peak in ϕ_K or ϵ_K . We emphasize that assignments to electronic transitions can be and have been made by us only on the basis of $\tilde{\epsilon}_{xy}(\omega)$ or $\sigma_{xy}(\omega)$ spectra and not on $\tilde{\phi}_K(\omega)$. To make such assignments even more reliable, comparison to $\tilde{\epsilon}_{xx}(\omega)$ or $\tilde{\sigma}_{xx}(\omega)$ spectra has always been made.

J. Schoenes

Laboratorium für Festkörperphysik Eidgenössische Technische Hochschule Zürich 8093 Zürich, Switzerland

W. Reim

Siemens Research Center 8520 Erlangen, Federal Republic of Germany

Received 20 February 1987 PACS numbers: 78.20.Ls, 71.45.Gm

¹H. Feil and C. Haas, Phys. Rev. Lett. 58, 65 (1987).

²W. Reim, J. Schoenes, F. Hulliger, and O. Vogt, J. Magn. Magn. Mater. **54–57**, 1401 (1986); J. Schoenes, J. Magn. Soc. Jpn. **11**, Suppl S1, 99 (1987).

³W. Reim, J. Schoenes, and O. Vogt, Phys. Rev. B **29**, 3252 (1984), and Solid State Commun. **47**, 597 (1983).

⁴W. Reim, O. E. Hüsser, J. Schoenes, E. Kaldis, P. Wachter, and K. Seiler, J. Appl. Phys. **55**, 2155 (1984).

⁵J. Schoenes, Phys. Rep. **66**, 187 (1980).