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Vortex Entanglement in High-T, Superconductors
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New kinds of intermediate flux states should be accessible in high-T, superconductors, in fields slight-
ly above H, l. Flux-line wandering leads to an entangled vortex state whose statistical mechanics is iso-
morphic to an interacting 2D Bose superfluid with cooperative ring exchanges. In sufficiently thin sam-
ples, this "braided flux" phase transforms into a liquid of disentangled rods.

PACS numbers: 75.10.Jm, 67.40.Db, 75.50.Ee

One of the many fascinations of the Cu02-based su-

perconductors is the possibility of novel fluctuation ef-
fects due to the high critical temperatures and small
coherence lengths. Interesting modifications of the stan-
dard BCS-based Gin zburg-Landau mean-field theory
may be expected at T, in zero field, and when the Abri-
kosov flux lattice forms with decreasing temperatures at
H, 2.

3

In this paper it is shown that there are also remarkable
fluctuation effects near H, t, where well-separated flux
lines first penetrate the Meissner phase with increasing
applied field H. The striking high-resolution Bitter
decorations of hexagonally correlated flux quanta in

YBa2Cu3Q7 of Gammel et a/. provide strong evidence
of flux penetration in an intermediate state, regardless of
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where r;, =r; —r, and Kp(x) is the modified Bessel func-
tion, Kp(x) = (tr/2x) 'i e " for large x. The last term
comes from the expansion of the total line energy,
E; =e~fg(1+ ~

dr;/dz
~

) 'i dz. Flux lines begin to
penetrate when the first term changes sign, i.e., when

H ~ H, ~

—4tte~/@p. Conventional treatments of the
transition at H, t assume that the vortices form a tri-
angular lattice of rigid rods with areal density n =8/4p
parallel to the z axis, so that the last term of (1) van-
ishes. Balancing the first two terms then leads to'
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4ttA, '(H H,t)—
for H close to H, 1.

The treatment sketched above neglects thermal fluc-
tuations in the vortex positions as they traverse the
length of the sample. A simple random-walk argument
shows that the root mean square distance traveled per-
pendicular to the field is of order AL =(2ttLkaT/et) '

Although this quantity is small in conventional supercon-

the underlying microscopic mechanism' for the super-
conductivity. Because of the large critical temperatures,
flux lines can wander significantly as they traverse a
sample of thickness L, in contrast to the rigid vortex lines
assumed in the classic Abrikosov treatment of the inter-
mediate state. This line wandering changes the nature
of the transition at H, ~, and leads to new physics for
H~ Hc

My starting point is the Gibbs free energy for N flux
lines whose positions with a field H along the z direction
in a sample length L are given by r;(z) =(x;(z),y;(z)),
i =1, . . . , N. I work in the London limit, since the ratio
of the penetration depth X to the coherence length g is
typically quite large, K =X/(=10 . If et is the energy
per unit length of a single flux line, and @p=2trh, c/2e is
the flux quantum, the energy reads'

2
~L dr;(z)

dz, (1)
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ductors, it is an order of magnitude larger in YBaz-
CU307 because of the high T, 's and relatively modest
H, t's. If we take for concreteness T =77 K, H, t (77
K) =70

~, and L =1 cm, we find that AL =(8tr LkaT/
@pH, t ) ' =2.5 ittm. Just as in treatments of wall
wandering in 2D commensurate-incommensurate transi-
tions, 6 collisions between vortex lines will be important
whenever AL becomes comparable to the line spacing
d = (ep/8) ' =n

To estimate how collisions alter the prediction (2) in

the limit of large sample sizes, note first that a full sta-
tistical treatment of (1) entails integration of exp( —G/
kaT) over all vortex trajectories {r;(z)I. Following Ref.
6, note that each collision reduces the entropy in this
sum relative to a noninteracting system by kalnq, with

q &1. Since the spacing between collisions in the z
direction is roughly l =et/krtTn, the total number of col-
lisions is of order (L/l)N=(LA)n kaT/et, where A is
the cross-sectional area. The statistically averaged
Gibbs free energy per unit volume g(n) acquires an en-
tropic contribution

g(n) =gp+(et H+p/4tt)n+n—(3@//8tt A. )Kp(d/X)+(kaT) n (lnq)/et.
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Here, gp=const and only the contribution from the six
nearest neighbors has been used to estimate the second
term of (I). Upon minimization with respect to n, the
third term dominates the second for small n =8/@p and
one finds 8 =c[e~@$/(kaT) ](H H ]) where c is a
geometrical constant.

Although there are logarithmic corrections to this re-
sult (see below), it is already apparent that wall wander-

ing can produce important changes in the rigid-rod
theory. Upon equating the above prediction with Eq.
(2), neglecting logarithms but using a more accurate es-
timate of c given below, we find that wall collisions
change the nature of the transition at H, ~ when

(H H, ))/—H, ) ~Bh, =(8z/J3)(kaT/Xe)) .

The parameters used above (with A. =2000 A) give
6h, =0.3X IO . Although this reduced field is small,
considerably larger values can be obtained by one' s

working closer to T„since e~ vanishes like A, in this
limit.

Fluctuations not only change the nature of the transi-
tion at H, ~, they also produce new phases for H & H, ~.

To see this the partition function associated with Eq. (I)
must be treated more carefully. It will be convenient to
impose periodic boundary conditions in the z direction:
A configuration of vortices in the plane z=0 must lead
to an identical configuration when lines reach the plane
z =L. To sample the allowed phase space completely, one
must sum over different ways of connecting the vortices
between these two planes. The partition function is thus

l +Pearl(0)) +PfrN(0)]

where there is sum both over W and over permutations P which connect the particles in the two planes.
In this form, the partition function is identical to the Feynman path integral for the grand canonical partition func-

tion of a fluid of interacting bosons in two dimensions with chemical potential p =H@p/4z —e~. The trajectories of vor-
tices along z are isomorphic to boson world lines. The thermal energy kaT plays the role of 6, while the sample thick-
ness L corresponds to the distance Ph in the imaginary time direction. The vortex line energy ei is the boson mass.
AL =(2nLkaT/e~) ' is a classical analog of the thermal de Broglie wavelength.

I first discuss the behavior of the flux lines as L ~, where the problem reduces to that of finding the ground state
of interacting bosons in two dimensions. Both the boson "masses" e~ and interaction range X are adjustable by variation
of the temperature of the superconducting sample. Just as zero-point energy can melt a crystal of light bosons at
sufficiently low pressures, the usual Abrikosov flux-lattice state will be melted by thermal wall wandering at fields H
such that the spacing between flux lines exceeds X. To estimate the field H„below which the flux lattice becomes
"superfluid, ' I assume a density of lines such that (2) holds. The flux-line spacing will equal the range of interactions
when 8 =@p/k, which leads to the estimate

H, H, )
= (3@—/4zk )exp( —2' /3 ' )

Using the result H, ~ =Op(lnK)/4+k, I find that the superfluid exists over a reduced field range

(H„H, ))/H, ) =(3/Inc—)exp( —2' /3' ) =0.22

for K =102.
The chemical potential p of the 2D Bose gas is known to be related to the particle density n by9 p =(4mnh /m)/

~
In(na ) ~, where a is the interaction range. Upon translating this result into the language of type-II superconductors,

I find

8= [e~4$/16m (kaT) ](H H, ]) [In[a~Op(k/4zkaT) (H —H, ()] ). (5)

Except for the logarithmic correction, this has the form
predicted by my naive random-walk argument, with
c= I/16m . The logarithm appears because particles oc-
casionally slip past each other instead of colliding.
There is also a singular term in the Gibbs free energy,
G(H, T)-(H H, ~) In(H —H, ~—), which implies a log-
arithmic divergence in the specific heat CH (T) as H, ~

is

approached from high temperatures. In addition to the
behavior implied by Eq. (5), the 8 vs H curve will have a
jump at H„(T), if, as seems likely, the transition from a
flux crystal to a superfluid liquid is first order.

What does superfluidity mean for a liquid of flux
lines? To answer this question, assume L (~, and con-

sider the phase diagram shown in the inset to Fig. I,
drawn for 2D bosons with a purely repulsive potential, as
a function of "chemical potential" (H —H, ~) and "tem-
perature" (L '). The real temperature is held fixed at
T ( T, . For small L and low line densities, AL is much
less than n '~, and we have a "disentangled flux liquid"
(phase 8) of lines which do not meander significantly as
they traverse the sample. As L becomes larger, particles
begin to trade places with appreciable probability, lead-

ing eventually to arbitrarily large cooperative ring ex-
changes7 in the superfluid phase (A). This elegant pic-
ture of the transition has been confirmed numerically for

1974



VOLUME 60, NUMBER 19 PHYSICAL REVIEW LETTERS

ci

I

Tc
H, (T j

FIG. l. Ahrikosov flux lattice (shaded), entangled-flux
liquid (A), and disentangled-flux liquid (B) phases as a func-
tion of 0, T, and L

He by Ceperley and Pollock in both three and two di-

mensions. ' Its meaning here is that the liquid of flux

lines becomes "braided" or entangled below the super-
fluid transition. Although averaging over different con-
nections of lines with periodic boundary conditions only

approximates the free boundary conditions appropriate
for vortex lines in a superconductor, this difference in

boundary conditions will clearly not affect the "entan-
gled Aux liquid" when L ~. I expect, moreover, that
entanglement will persist for large but finite L even with

free boundary conditions.
The above arguments suggest the existence of a sharp

transition from phase A to phase 8 in a superconductor.
Assuming for simplicity that a transition exists, and that
it is a Kosterlitz-Thouless transition, we can again tran-
scribe results for 2D Bose fluids, and find that the criti-
cal thickness for dilute vortex densiti~ n is L, =(el/
2xkaTn)lnln(1/nX ), a result which becomes exact
when lnln(l/nl. ))&1. For T=77 K, H, 1=70 g, and

n '~2=4&10 5 cm, I neglect the logarithm and find

L, =&oH, 1/8x nkaT =0.26 mm. In general, the entan-

gled vortex liquid appears at line densities such that

= (32rr kaTL/(Polntr)

A guess for the phase diagram based on these inequali-
ties is shown in Fig. 1, for a sample of fixed thickness
L. Phase 2 terminates below a temperature T~q
=@/(Intr)/32rr Lka, where these inequalities are first

violated. Tgg =14 K for a 1-mm sample with x =10 .
When L ~, phase 8 disappears, and the superfluid

phase 3 is separated from the flux crystal by the dotted
continuation of the line H„(T).

Bitter patterns alone are not enough to distinguish

phases A and 8. Vortex cores will display liquidlike or-
der in any constant-z cross section of both the entangled-

and disentangled-flux liquids. These phases should have
markedly different signatures, however, when correla-
tions among the flux lines are probed by neutron scatter-
ing. In the disentangled-flux liquid, diffuse rings of
scattering in the (q„,qr) plane will be sharp along q, . In
the entangled-flux liquid, on the other hand, these rings
will be disuse along q, because of short-range correla-
tions along z induced by entanglement. Neutron scatter-
ing might also uncover other phases, such as hexatic
liquid of flux lines, which could become entangled just as
in phase A.

The response of the flux-flow resistivity to pinning
should also differ in phases 3 and 8. Strong pinning
could, of course, destroy any of the phases discussed
above, including the Abrikosov flux lattice. Tinkham,
however, has argued that the ratio of the pinning energy
to kaT, in YBa2Cu307 is 25 times smaller than in, e.g. ,

Nb3Sn, " so that pinning should be rather weak at the
elevated temperatures of phase A. Weak pinning by di-
lute concentrations of defects could still suppress flux
flow in phase A, because one securely pinned line will en-
tangle many of its neighbors. Pinning of the disentan-
gled lines in the 8 phase should be much less efl'ective.

Strong pinning at low temperatures could lead to
quenched analogs of the A and 8 phases: Kardar and
Zhang' have shown that an isolated flexible line in a
random medium wanders even more strongly than its
thermal counterpart, (

~
Ar

~
) '~ -L . This may be the

explanation of the liquidlike order of the flux patterns of
Ref. 4, which were taken at 4.2 K. The lack of any ob-
served patterns at 77 K, on the other hand, may be due
to time-dependent flux line wandering in an equilibrated
A or 8 phase.
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Note added. —Although this analysis has been re-
stricted to the vicinity of H, 1, there may also be fluc-
tuation-induced Aux-lattice melting phenomena in the vi-

cinity of H, 2, as has been seen in recent experiments by
D. J. Bishop, P. L. Gammel, L. F. Schneemeyer, and
J. V. Waszczak. '
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