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Definition of a Transcendental Order Parameter for Reconstructive Phase Transitions
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%'e propose a generalization of the Landau theory of phase transitions which applies to reconstructive
transitions. For the first time an order parameter is defined for this category of transition. This order
parameter is shown to be a transcendental function of the large atomic displacements arising at the tran-
sition. The absence of a group-subgroup relationship between the symmetries of the phases is proved to
be the consequence of specific displacements. The approach is introduced through examples of recon-
structive transitions found in crystals of the elements.

PACS numbers: 61.50.KS, 64.70.—p, 81.30.Hd

The possibility of our defining an order parameter is a
preliminary condition for applying the symmetry and
thermodynamic concepts which underlie the Landau
theory of phase transitions. ' Such a definition presup-
poses that a group-subgroup relationship is realized be-
tween the phases surrounding the transition. This is al-

ways verified for second- and first-order structural tran-
sitions in which the rearrangement of structure is such
that only small displacements of the atoms take place.
By contrast, for reconstructive transitions in which
large displacements and drastic reordering take place, a
group-subgroup relationship is in many cases absent, and
no order parameter has been defined up to now. For this
category of transitions which is found in most of the ele-
ments, in a number of alloys, and in some insulators,
it is usually admitted that the Landau theory cannot be
used, and only crystallographic and atomistic models
have been proposed in order to describe their mecha-
nism.

In contrast to the preceding ideas, we show in this
Letter that an an order parameter can be deftned for
reconstructive transitions. It is shown to be a transcen-
dental function of the average atomic displacements (or
of some other variational parameter associated with the
transitions mechanism) and not a linear function of the
displacements as assumed in the standard Landau theory
of phase transitions. ' For specific values of the displace-
ments, and enlargement of the symmetry groups of one
phase is shown to take place and subsequently the
group-subgroup relationship ~ith respect to the other
phase is lost. The equilibrium states of the system are
obtained by minimization of the thermodynamic poten-
tial of the transition with respect to the shifts and not
with respect to the order parameter compon-ents, in con-

trast to the traditional procedure' but in agreement with
the statistical mechanics methods. ' Aside from the usu-

al Landau phases, which are connected with the high-

symmetry parent phase by a group-subgroup relation-
ship, the minimization procedure provides additional
non-Landau phases which do not correspond, in most
cases, to subgroups of the parent phase and possess dis-
tinctive properties, as, for example, a constant value for
the transition order-parameter below the transition point.

As a first illustrative example to our approach, let us
focus on the P-co transition reported for Ti, Zr, and
Hf. The average shifting of the Ti atoms from one
phase to the other, as deduced from the superstructure
observed from electron diffraction and x-ray patterns,
takes place along the [111] cubic direction [Fig. 1(a)]
and can be conveniently represented in the (011) cubic
plane [Fig. 1(b)]. Depending on the magnitude of the
displacements along [ill], PUe phases may arise: (1)
the P phase, corresponding to unshifted atoms. It has
the parent Of symmetry with a number of atoms Z =1
in the elementary unit cell; (2) the hexagonal co phase,
which appears as the result of a shift of a J3/12. It
possesses the symmetry D)t, with Z =3; (3) the P' phase,
isostructural to P which is induced by a shift of a J3/6
and can be deduced from P by a rotation of 60' around

[111];(4) the h phase, arising for a shift of a J3/3. It
has the same hexagonal symmetry as the co phase but
with Z= 1; (5) the rhombohedral co phase, associated
with any general shift along [111]. Its space group is

D3d with Z=3.
As stressed by de Fontaine, the shifting of the Ti

atoms in the hexagonal co phase with respect to their po-
sitions in the P phase can be expressed as combinations
of three independent basic vectors, denoted by att, btt,
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FIG. l. (a) Primitive unit cells of the P and hexagonal co

phases. The shifting of the atoms at the P-co transition takes
place within the (011) hatched plane. (b) Shifts of the atoms
within the (011) cubic plane. Filled, circled, hatched, open,
and crossed atoms represent the positions of the atoms in this
plane for the P, hexagonal co, P', h, and rhombohedral co

phases, respectively. In (a) and (b), the direction of the shifts,
symbolized by arrows, in along the [111]cubic direction which

corresponds to the side of the plane in (b), scaled in a J3/2
units.
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and cp, associated with the primitive cubic p unit cell
[Fig. 1(a)]:

a =a& —
b&, b„=bz —

cp, c„=a~+btj+c&.

We can associate to the set of a„, b„, and c vectors, the
wave vector k~ pertaining to the bcc Brillouin zone which
expresses the linear relationship (1). It is k~ = —,

'
(ap

+b& +c& ), where ap, b&, and cp are the reciprocal lat-
tice vectors. As k1 is invariant under the operations of
the point group C3„, its star has eight arms'o and the
representation spanned by the components of the shifts
of all the atoms from the p to the co phase can be shown
to be composed by an eight-dimensional irreducible rep-
resentation (IR), denoted by r~(kt) which accounts for
the shifts along [111],and by a sixteen-dimensional IR
expressing the atomic shifts within the plane [111].
Decomposing the basis vectors p; which span the repre-
sentation space in terms of symmetric coordinates for the
shifts along [111],one finds that all basis vectors have
zero coefficients except p~ and p2, which correspond to
the arms ~ k~. Two space groups, subgroups of Of, can
be subsequently shown to be induced by r t (kt) and to
display the superstructure (1), namely C3„(Z=3), and

D3d (Z =3). One can easily verify that the first of these
groups describes nonsymmetric shifts of the atoms denot-
ed by 2 and 3 in Fig. 1(b), whereas for symmetric shifts,

FIG. 2. Periodic dependence of the order parameter for the
(a) P-co transition and (b) P-a transition in titanium, and for
the (c) b-y transition in iron. Here h~ =sin(arccos —,

——, z),
and A2 = —arcos —,

' .

4~( zc 1
g =go sin +-

a/3 6 2
(2)

The form of the function (2) is justified in Fig. 2(a),
which shows that for successive values of g along [111],

assumed in Fig. 1(b), one obtains the space group Dfd
which corresponds to the rhombohedral co phase. For the
specific shifts of magnitude a J3/12, where a is the cubic
lattice parameter, the rhombohedral symmetry D jd
(Z =3) increases to D)t, (Z =3), which is the actual
symmetry of the hexagonal co phase.

Because of the magnitude of the shifts assumed in the
preceding mechanism for the p-co (Of-D jt, ) transition, it
should be unphysical to put forward a linear relationship
between the order-parameter modulus (denoted by rt)
and the shifts (denoted by g) as it is usual in the stan-
dard Landau theory of structural transitions, ' where the
shifts are assumed to be small. Let us show that a good
understanding of the p-co transition can be obtained by
the introduction of a transcendental dependence of rt as a
function of (. We will take here
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FIG. 3. Periodic character of the bcc-fcc Bain deformation
of the iron unit cell, viewed by our considering the angle be-
tween the diagonals in the ((10) cubic plane.
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one gets the rhombohedral co phase as a stable state. It
is easy to show that this latter phase coincides with the
Landau solution, obtained by our minimizing F with
respect to the order parameter t), which depends on the
coefficients in F, in agreement with the phenomenologi-
cal model of Cook and Pardee. " Let us stress that the
non-Landau hexagonal cv phase is obtained only by a
minimization of F with respect to the shifts. Besides, the
it phase, which corresponds to cosf(() =0, represents an
unstable configuration of the atoms with respect to the a
structure discussed here below.

A similar scheme applies to the P-a transition' ' also
reported in Ti, Zr, and Hf. In the hexagonal closed-
packed a modification, the angle between the threefold
axes, which is about 70' in the P phase, becomes 60'.
The basic vectors of the hexagonal a unit cell can be ex-

one gets periodically the sequence of P, hexagonal rv P',
and h phases. More precisely, for )=0,1,2, 3, . . . (in
a J3/2 units), one has t) =0 for the parent P phase; for

t) =0 again for the P' phase, for
r) = —

1 (the it phase). The
preceding numbers demonstrate that Eq. (2) complies
with the standard definition of an order parameter (i.e.,
t) =0 for the parent P or P' phases and r)~0 for the cv

and it phases) and that it holds for inftnite shifts.
Taking into account the equilibrium values found for

the eight-component order parameter for general shifts
along [ill], namely r)t =t)2&0 and r)3= ' ' ' =r)s=0
one can write the effective potential associated with

rt(kt) as F=Fo+att) +bt)'+a2r)4. Replacement of
(2) in F and minimization of F with respect to the shifts

g, yields the equation of state:

[sinf(g) ——,
' ]cosf(g) [2al+3b[sinf(g) —

—,
' ]

+4a2[sinf(() —
—,
' ] ] =0, (3)

with f(g) =4xg/a/3+x/6. It leads to three possible
stable states: the p and hexagonal ro phases for, respec-
tively, sinf(() = —,

' (i.e., for g =0, 1,2, 3, . . . ) and

cosf(g) =0 (i.e., for (= —,', —,
' —", , —", , . . . ), namely for

constant values of the order parameter. For

pressed in functions of the primitive cubic lattice vectors
as

a, =alj+bIt+c~, b = —
ctt, c, =a& —

b& . (4)

The wave vector corresponding to (4) is k2= —,
'

(a&

+bp ), located at the N point of the bcc Brillouin zone.
The star of kz has six arms, ' and the shifts of the atoms
at the P-tt transition, which take place along the cubic
[110] direction, ' are connected with a single six-
dimensional IR, denoted by r4 in Ref. 10. From the
symmetries induced by the preceding IR, '4 one can infer
the following scheme for the P-a transition: when the
atoms are shifted along [110], the system exhibits the
symmetries Dg (Z=2) for general shifts and Df1,
(Z =2) for the high-symmetric shifts of magnitude
a&2/12, 7a&2/12, . . . . This latter space group coincides
with the symmetry reported for the a phase. The form
of the order-parameter modulus g as function of the
average shifts ( is given for the P-a transition by

g=(o sin +-4xg x I

a@2 2 2
(s)

which is represented in Fig. 2(b). Thus, one can see that
for the high-symmetric shifts a J2/4, 3a J2/4, . . . , one
gets the it phase of symmetry Dj)t (Z =1) already found
in the P-co mechanism. Accordingly, the unstable h

phase provides the link between the P-ro and P-a transi-
tions, the co-a transition' appearing in our model as a
transition between two low symmetr-y phases associated
with different IR's (and different wave vectors) of the
parent p phase.

As another illustration of our approach, we will exam-
ine the bcc-to-fcc and bcc-to-hcp transition, which both
occur in Ba, Tl, Fe, and Yb. ' In iron, for example, the
phase sequence b(Oh)-y(0$)-a(Og) is reported at at-
mospheric pressure and decreasing temperature, 3 while a
triple point is found at P, =97 kbar and T, =450'C, at
which the a and y phases tnerge with the hcp e phase.
For all phases, Z =1, except e for which Z =2.

The periodic character of the bcc-to-fcc Bain deforma-
tion of the unit cell in iron can be viewed by our consid-
ering the angle ( between the diagonals in the (110) cu-
bic plane (Fig. 3). One can see that the &y and y-a
transitions both correspond to an increase of g by about
19'. Such a deformation is accounted by the two-
dimensional IR of the parent Og space group (i.e., the b
phase) at k=0, denoted by z3 in Ref. 10, which is
spanned' by the two combinations of the strain-tensor

1 Icomponents: rlt = —, (e» —
e~y ) and t)2 = —, (e»+ e~y—2e„). It induces' for t)t =0, t)2=t)~0, the symmetry

D4t). However, as when going from the b to the y phase

g varies from =71' to 90', the preceding tetragonal
symmetry transforms into the cubic symmetry Og (the y
structure). A subsequent variation of g by 19' restores
the Og symmetry (the a phase).

1960



VOLUME 60, NUMBER 19 PHYSICAL REVIEW LETTERS 9 MAY 1988

The dependence of the &y transition order-parameter
tI as a function of the angle ( is given here by

ri
= rto[sin(6& —tt/2) —cos(6arccos —,

' ))

and is represented in Fig. 2(c). The unobserved tetrago-
nal D4) phases labeled e' and e" in Fig. 3, correspond to
a deviation of about 11' from the b and a phases, re-
spectively. e' and e" are obtained one from another by a
rotation of 90' around [110]. Their pseudohexagonal
character prefigures the hcp e phase, which is induced by
the same IR of the Oh space group (the a phase), at the
N point of the bcc Brillouin zone, which has been shown
here above to be associated with the P-a transition in Ti,
Zr, and Hf. Consequently, the same dependence, given

by (5), is verified for the a-e transition order parameter
as a function of the angle g. An experimental
confirmation of this analysis is provided by the phonon
spectrum of lithium, ' which reveals the softening of an
optical mode at the N point of the bcc Brillouin zone for
its bcc-hcp 78-K transition, as predicted in our approach.

Although the generalization of the Landau's theory
presented in this Letter applies in a general manner to
reconstructive transitions, we have chosen to illustrate its
applicability to the restricted case of some groups of ele-
ments, because the simplicity of their structures allows
concrete considerations on the shifts of the atoms. The
existence of a small number of sublattices is indeed an
important necessary condition for one of the more essen-
tial mechanisms assumed in our approach to take place,
namely, the increase of symmetry of one phase due to
specific high-symmetric shifts of the atoms. The ex-
istence of a complex set of sublattices would be unfavor-
able for such a mechanism, as the increase of symmetry
associated with one type of sublattice should be compen-

sated by the nonsymmetric shifts associated with the oth-
er sublattices, and the group-subgroup relationship be-
tween the phases should be preserved as noted by Cahn
in the case of metallic alloys. '
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