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By use of general principles (Kubo-Martin-Schwinger condition, breakdown of Lorentz invariance,
triviality arguments), the nature of diagrammatic perturbation theory in relativistic field theory at
nonzero temperature is investigated. By operator-algebraic techniques it is found that the conventional
method is inconsistent, and an essentially unique alternative is given.
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Relativistic quantum field theory at nonzero tempera-
ture (T) is a basic theoretical tool for the study of the
quark-gluon plasma, which may be created in heavy-ion
collisions, and, more generally, for the description of the
early Universe. In contrast to the vacuum case (7=0),
perturbation theory has been of little help in this area.
For example, in quantum chromodynamics the naive
thermal perturbation series blows up as a consequence of
uncontrollable infrared divergences. '

Even though problems like this might be remedied by
certain partial resummations, it seems worthwhile to for-
mulate a perturbation method that is well defined and
consistent without the need of sometimes rather ad hoc
rescue operations. This amounts to the identification of
the correct free Hamiltonian (or Lagrangean), as it is
the free propagator that determines the nature of the
perturbation series.

Now conventionally? one just takes over the free
Hamiltonian H¢ from the vacuum theory, and goes on to
expand in terms of the renormalized coupling constant A.
At T=0, Hy is uniquely determined for field theories
describing scattering of particles of mass m > 0. Name-
ly, Ho should be such that the free (scalar) propagator
becomes D(p) =(p?—m?2+ie) ~!, as only this choice
implies that the S matrix is unitary order by order in
perturbation theory as a consequence of the cutting equa-
tions.? Moreover, the expansion parameter A has a direct
physical meaning as the scattering amplitude at some
given energy.

At nonzero temperature, however, this picture dramat-
ically changes. In order to discuss structural issues like
this it is convenient to assume that the system is
infinitely extended; the same approximation is always
made in quantum scattering theory. Infinite systems can
be studied by operator-algebraic methods; our recourse
to operator and Hilbert-space techniques is further
motivated by the nonperturbative solution* of the in-
frared problem in vacuum QED, in which the identifi-
cation of the nature of the photon Hilbert space turned
out to be crucial.

The operator-algebraic approach to quantum statisti-
cal mechanics® (including thermal field theory) starts
with a state o (a positive linear functional over the

abstract operator algebra ) satisfying the Kubo-
Martin-Schwinger (KMS) condition®> at T=p"'. Sub-
sequently, ¥ is represented by operators x,,() on a con-
crete Hilbert space %, with cyclic ground states |0(8))
(also called Q,), such that w(4) =(0(B) | z,(4) |0(B))
[Gel'fand-Naimark-Segal (GNS) representation induced
by w?°]. The essence of this construction is that the
thermal average is equal to a generalized vacuum expec-
tation value. If % describes a field theory this construc-
tion leads to the so-called thermo field dynamics. %’ Or-
dinary (T=0) quantum field theory can be set up simi-
lary; then, of course, @ is chosen to be a vacuum state.
Most importantly, under a mass gap assumption, %, can
be shown to be (more precisely, to include) a Fock space
spanned by particle states. This, in turn, leads to the
perturbation theory described above.

I would like to have an analog of this structural result
at nonzero T as well. So let us ask, given a KMS state
o, what is the concrete realization of #,, and what kind
of consistent perturbation theory is implied by it? This
question is decidedly nontrivial even if the answer is
known at zero temperature, because representations of A
at different temperatures are disjoint> (a strong form of
unitary inequivalence). In fact, the identification of the
correct perturbation theory crucially depends on the rep-
resentation (vacuum, thermal) as well as on the dynam-
ics.

The KMS condition implies>* three basic differences
between zero- and finite-temperature representations:
(i) _There is a one-to-one correspondence IR € A
—A €M between M=r,(A)" and its commutant IM'.
In particular, |0(8)) is cyclic for ', contrary to (pure)
vacuum representations, where R’ is trivial. (ii) The
generator of time translations H in #,, which acts as the
effective Hamiltonian, is unbounded from below, and its
spectrum is? R _This follows from the relation?
H=limy_. « Hy — Hy, where Hy is the ordinary, finite-
volume Hamiltonian. This means that all (would-be)
particles are unstable in the presence of interaction. (iii)
Lorentz invariance is spontaneously broken, and boost
symmetry cannot be unitarily implemented.>'® Al-
though in KMS representations this does not imply the
existence of Goldstone bosons,!®!! it does indicate the
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absence of a dispersion relation (see below).

An important property of #, is that it carries a uni-
tary representation of the unbroken symmetry group G;
in the vacuum case one has G =P, the Poincaré group,
and in the thermal KMS case G=SO(3)(x T4, which is
P with boosts left out. If G is a type-I group'? (as in
these cases), Mautner’s theorem '? states that %, can be
decomposed as a direct integral over carrier spaces % (&)
of inequivalent irreducible unitary representations of G,
labeled by g € G, the dual of G. So up to unitary
equivalence,

H#o= [ du@n@%@), (1)

where 4 is a measure on G and n(2) is the multiplicity of
the representation g. In the vacuum case G =P is la-
beled by the mass m? (and the spin for m?2> 0, etc.),
and (if we ignore the spin for simplicity) the carrier
space 7 (m?) consists of square-integrable functions of
four-momentum p restricted to the orbit p2=m?2, po> 0.
In the language of (1), the existence of one-particle
states with mass gap implies that u(m?) is the sum of a
point measure and a continuous measure. It is important
to notice that the dispersion relation po=w,=(p?
+m?) 2 is implicit in the structure of P and # ().

At nonzero T we need to know the unitary irreps of
SO(3)(x T4; simple application of the theory of induced
representations'? shows that these are labeled by three
numbers E€R, c2€R™, and n€Z (hence G=R
xR*xZ). The carrier space % (E,o%n) consists of
square-integrable functions ¢f ,(p) restricted to the or-
bit po=FE, p>=o? (n enters in the explicit action of
group elements on these functions). One immediately
notes the complete decoupling of energy and momentum
and, hence, the absence of a dispersion relation.’ The
crucial question is now: What is du(E,o%n)? Conven-
tional perturbation theory? tacitly and implicitly pre-
sumes that duy contains a point contribution
dE do*6(E —e(c?)) for some “dispersion relation”
e(p?). (By this I mean that standard perturbation
theory can only be rigorously justified if this is the case.)
Equivalently, this means that the operator H — e(P?) has
proper eigenstates other than |0(8)).

Most distressingly, such an assumption cannot be
justified in an interacting system. First, contrary to the
vacuum case, a dispersion relation is not suggested by
the group theory. Second, spectral analysis’ shows that
the full two-point function should then have a pole in
po=e(p?), which in reality is not seen in sufficiently
high order of (standard) perturbation theory.?’ Third,
it can be shown'? that, as a consequence of the operator
property (i) above, such “quasiparticles” with energy
e(p?) would not scatter if they existed. This, in fact, is

the major contrast to the corresponding situation at
T=0: There is no room for interaction between exact
quasiparticles at nonzero 7. Indeed, point (ii) above al-
ready contradicts the notion of stable, asymptotic on-
shell particles.

This argument purports to show that the description of
interacting field theories at nonzero temperature should
be drastically modified. Now that we are denied in-
teracting particle states in #,, the part of #,, containing
interacting states must have the structure

Hint=%£(0,0,0) ®oo- # 1V, )

where 1 have abbreviated # V) == dE [ do?# (E,
62,0), and for simplicity I have restricted myself to sca-
lar field theories. The first term in (2) accounts for the
state |0(B8)), while the second term, in fact, summarizes
what we know about the spectrum of H and P. Note
that any other multiplicity than oo in (2) would be most
puzzling. It is a highly nontrivial feature of the
Clebsch-Gordan series of the group SO(3)(x T, that
# ™ in (2) can be written'* as a Fock space over % ).
Since %# " is isomorphic to L2(R*), our results boil
down to the proposal that the Hilbert space of the GNS
representation induced by a KMS state w is a Fock
space [L2(R*)] if the operator algebra describes an in-
teresting scalar field theory without collective modes,
Goldstone bosons, etc. If the latter exist, as in more
complicated field theories, they contribute further terms
to #, involving point measures in (1); such modes would
have to propagate undamped in accordance with the re-
sult in Ref. 13. In the following, I shall ignore these and
set #o,=FHM For free fields #, is known2’ to be the
direct product of two identical copies of the T=0
Hilbert-Fock space [L2(R%)], and so interactions dis-
tinctly alter the Hilbert space; this occasionally happens
at T=0 as well.”

The next step is to determine the perturbation theory
consistent with this result. To do so, let us first identify a
complete set of operators on #,. Because of the Fock
nature of #,, the creation and annihilation operators
BME,c%0,0) do the job. Here the B’s annihilate
|0(B)) and are affiliated® to Tk |y M' [cf. (i) abovel. [B
is called a(8) in Refs. 2 and 7.] Since (H) ™~ =—H we
have BP(E, ... )=p™(—=E,...), so that we can set
E =0 in operators without a tilde. Subsequently, B(”
and 5(*) are Bogoliubov transformed?’ into operators
a™ and @ that are affiliated to 2 and ', respective-
ly. These operators are then used to construct covariant
operator fields.!> For n=0 certain technical complica-
tions arise,'* which are similar to those encountered in
the construction of Poincaré-covariant massless fields,
and so here I shall just give the result for a scalar field
(E>0):

¢E,a(x)=E“/20‘2(270‘3fd3pe"P'""E’5(|p| —o)a(E,p)+H.c, 3)
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where o, 6, and ¢ are assembled in p. We see that ¢ is a field with two parameters ¢ and E; as such it forms a generali-
zation of the so-called one-parameter Licht field 16 that has been employed to describe unstable particles at 7=0. !
By construction, the action of H on a dense set in #, coincides with that of

Ao@) =+ [[dx [,"@E/20) [ doydorotodlo o, (x)+E 050, ()0g.0(x) — Le], 4)

where t.c. means tilde conjugate; clearly ﬁo governs the
time evolution of the ¢£ ,(x).

For the derivation of an analog of the Gell-
Mann-Low (GML) formula and thence of diagrammat-
ic perturbation theory one needs a ‘free” Hamiltonian
Ho(A4) expressed in terms of the Heisenberg-picture
fields A(x), and an asymptotic condition in the
Lehmann-Symanzik-Zimmermann (LSZ) sense A(x)
— ¢(x). If Ho(4) is such” that Ho(g) is weakly equal
to the full H(A4) in the representation space %,, then
the GML formula can be derived'* without use of the
nonexistent “in” picture. It may be remarked that con-
ventional perturbation theory at 7>0 based on the
naive Ho from the vacuum theory meets neither of the
above criteria. Namely, the spectrum of the naive Hy
differs from that of H, and in addition the field 4(x) has
a vanishing LSZ limit, as in the unstable-particle case at
T=0.'"17 T remedy this as follows. I introduce a func-
tion Z(E,oc) defined by

0B) | A(x) | p)=e "iErtipxz UN(E )

and then spectrally decompose the field 4(x) according
to

A = [ TE/2m)do a'Z VAE ) Ap o(x).  (5)

Here the Ag o (x) must be chosen such that (0(8)
x| Ag o(x) | p)=0 for | p)=|E,c%6,¢) € # ; that (5)
makes sense follows from the completeness of the
0£.0(x)."* An analogous construction using Licht fields
A;(x) has been performed at 7=0, where it can be
shown that in contrast to A(x) the 4;(x) do have an
LSZ limit in the distributional sense.'®'” At T>0 the
existence of an asymptotic limit is hard to prove because
of poor cluster properties, and so we have to postulate it.
If there is no such limit, the following is void of content.
If there is such a limit, the normalization factor Z in (5)
ascertains that the ¢g ,(x) can be chosen so as to be
equal to the LSZ limit of Ag ,(x) for t— — oo,

According to the preceding remarks one can then
derive the GML formula for n-point functions of the
Ago(x), and hence of A(x) by (5), by choosing
Ho=Hy(A4), which is simply (4) with ¢g , replaced by
Ag . This leads'* to the free propagator (in thermal-
doublet notation’-?)

J dtxem0(p) | TA(x)4*©) | 0(8))o

= [ aEZ (&, 1pDD* (po.E). (6

Here D**(po,E) is the well-known? free thermal propa-

gator matrix with w, replaced by E. Notice that the ille-
gal choice Z=6(E —w,) reproduces the conventional
formalism. My particu}ar choice for Hg also induces a
counterterm, because Hg does not occur already in H.
The naive H( from the vacuum theory emerges as a
counterterm as well; the complete Feynman rules are
given in Ref. 14. An important property is that pertur-
bation theory with the propagator (6) identically satisfies
the KMS condition. ?

Finally, the function Z(E,o) should be specified.
Clearly Z(E,s) is a continuous generalization of the
wave-function-renormalization constant Z that appears
in the case of a single asymptotic field. The determina-
tion of this constant [by the demand that the full propa-
gator of 4(x) has a pole with residue Z] cannot be trivi-
ally generalized, because the thermal two-point function
has no pole in po. However, the “bare-bones propaga-
tor”

0B) | TAg o (x) 4. ,(0) |0(B))

in momentum space does have a pole in po=FE by con-
struction. This may be used to derive'* a self-consistent
equation for Z(E,s), which can be solved with use
of perturbation theory for the ordinary self-energy
=#(p),>” but now computed with internal lines given by
(6) which itself contains Z. The solution will be a func-
tion with two free parameters y and x which determines
the bare constants mg and Ao in H in terms of u, x, T,
and a cutoff. Lacking a direct physical interpretation
and being arbitrary, 4 and x may subsequently be ex-
changed for, e.g., the heat capacity ¢, and a static trans-
port coefficient n plus a set of renormalization conditions
(“conditions of fit”). So ultimately one obtains a com-
pletely renormalized perturbation expansion in terms of
thermal observables ¢, and n rather than the contextual-
ly meaningless T=0 parameters m and A. One can fol-
low this algorithm even without actually having solved
Z(E o) from the self-consistency equation, by making a
suitable two-parameter Ansatz. A useful guess would be

Z(E, o) =x/nl(E = (ui+ 1) /2)2+,2] 1,

Surprisingly enough, for k < u [so that the E integration
in (6) can be extended to — o] this choice reproduces
the “dissipative perturbation theory” proposed by Arim-
itsu, Umezawa, and Yamanaka,'® including its purely
imaginary counterterms, ' in the stationary case.

Let me finally note that my formalism is highly non-
perturbative from the point of view of naive perturbation
theory. In particular, the latter does not produce the
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correct analytic properties of the full propagator (e.g., a
cut through the entire real axis, related to the theory of
HP? spaces) in any finite order, although the necessary
accumulation of branch points is approached in higher
orders. !

These results were first presented and discussed during
the author’s stay in Edmonton, which was financially
made possible by a travel grant from the Netherlands
Organization for the Advancement of Pure Research
(ZzWO).
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