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A novel action-variational approach based on certain natural criteria is proposed. Its accuracy and
advantages are demonstrated for U(1) gauge theory in four dimensions.
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Monte Carlo simulations of gauge theories have led to
interesting results and considerable insight in recent
years. A problem which remains is that one cannot get
far enough into the weak-coupling region which is of in-

terest for particle physics. Similarly as in lattice-field
theories, critical slowing down in statistical physics is

also an obstacle to the solution of some interesting prob-
lems.

In order to look for a way to obtain nonperturbative
results beyond the simulation region, a reconsideration of
action-variational approaches appears appropriate. In
lattice-gauge theory one begins with mean-field meth-
ods' and their refinement by a saddle-point expansion.
Next, the cumulant expansion of the free energy is
used. ' Then a method which imposes the Schwinger-
Dyson equation on an expansion of the correlation func-
tion is introduced. With this method we recently were
able to calculate to higher orders, determining geomet-
rical coefficients by computer instead of enumerating
contributions graphically. Our quantitative second-order
results revealed the necessity of revising the rules of
this method and showed that severe limitations on its
computational accuracy remain. This is because the
Schwinger-Dyson equation in many cases has no true
solution and one has to rely on a crude approximation.

In the present Letter a different approach is proposed.
It starts from the fact that in the calculation of correla-
tion functions the best results are to be expected if the
trial action is adjusted for each of these functions sepa-
rately. This requires that an expansion of the correlation
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function rather than, say, one of the generating function-
al, as in the saddle-point method, is to be used. It also
excludes the use of Schwinger-Dyson equations in which
sums of different functions would have the same trial ac-
tion. The crucial question then is where to get a cri-
terion for the adjustment of the trial action. The answer
is that a natural criterion is already inherent in the pro-
cedure and one does not need to introduce an additional
device which could fix things at best in an indirect way.
This criterion follows from the obvious requirement that
the expansion, to some finite order, must be a good ap-
proximation. Accordingly, the trial action has to be ad-
justed to a parameter point where the sequence of finite-
order approximations has an accumulation point.

In the following, this approach is demonstrated for
U(1) gauge theory in d 4 dimensions with computa-
tions up to fourth order. Denoting correlation functions
with respect to the action S by ( ) and to the trial ac-
tion Sp by ( . )p, one has the expansion
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where ( &$ are connected functions. With use of the
Wilson form S pg ~~ Up and the standard form Sp

ag ~ ( U(, where the signs of ~p and ~ l indicate
different orientations of plaquettes and links, respective-
ly, (I) becomes

Evaluation of the integrals in (3) leads to the form
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where j numbers difl'erent configurations and V(r is the
ratio of modified Bessel functions I(r(2a)/Ip(2a). The
integer constants eP», EP»(, . . . , EP» are determined

by the possible geometric configurations. They are ob-
tained with a computer algorithm which finds and counts
all types of configurations and transforms to the contri-
butions corresponding to connected functions.

When we consider rectangular Wilson loops, (X) in

t

(I) is denoted by W and the approximation of (1) in

which the sum only extends up to n by W„. Figure 1

shows typical results for Wp to W4 as functions of
r =a/[2(d —1)p]. It is seen that there is, in fact, an ac-
cumulation point not far from r= 1 at which the Monte
Carlo data are nicely approached. The property that W
does not depend on r is reflected by the W„becoming less
steep for larger n in the vicinity of this point. The pic-
ture (in Fig. I for a I x I loop at p-0.70655) is qualita-
tively the same for other loop sizes and for other p values
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by inserting the W„presented in Figs. 2 and 3. It is seen
that the deviations from the Monte Carlo values are still
moderate and smaller for third and fourth order. For

to break down. It is seen that higher orders and larger
loops are more sensitive in this respect. For fourth order
and loop size 2x2, one is only 6/o below the expected
transition point and it is obvious from Fig. 4 that an ex-
trapolation in order or loop size reduces this deviation.
Thus it appears that the method provides a clear signal
for the transition, and, on the other hand, it is seen to
keep its accuracy down to this point.

Below the transition point, though the solution where
a is of order 2(d —1)P is lost, the method still works.
Now the accumulation point at a =0 (for orders which
are able to cover the loop with plaquettes) becomes
reasonable. An indication for this that the Auctuations
of orders then become smaller than those of the upper
solution. On the other hand, this is clear because at
a =0 one gets just a particular form of strong-coupling
expansion. Then in (4) only those terms contribute
where E~„,I

= . =E~„, =0. A consequence of this is
that up to fourth order in (2) only 2 of 515, 2 of 740,
and 1 of 724 terms remain for loop sizes 1 x 1, 2x 1, and
2x2, respectively. Thus technically it becomes much
easier to go to higher orders.

Figure 5 shows the results obtained for the Creutz ra-
tio
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FIG. 5. Creutz ratio X for n=1 to 4 compared with Monte
Carlo values.

large P the orders n =2 to 4 approach each other which
indicates better accuracy beyond the simulation region
also for Creutz ratios.

Finally, it appears appropriate to stress some main ob-
servations. The adjustment of the trial action for each
correlation function separately is crucial to obtain quan-
titative results. The natural criterion based on the fact
that the expansion must provide a good approximation is

quite stringent, not only allowing one to obtain precise
results but also giving one a clear signal for the transi-
tion point and the switching between solutions. The ac-
curacy increases for larger P such that one gets a partic-
ularly precise tool beyond the simulation region.

I wish to thank Michael Creutz for the Monte Carlo
data.
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