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Spectrum of Large Random Asymmetric Matrices
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The average eigenvalue distribution p(k) of N xN real random asymmetric matrices J;, (Ji,cJ„)is
calculated in the limit of N ~. It is found that p(X) is uniform in an ellipse, in the complex plane,
whose real and imaginary axes are 1+ r and 1

—i, respectively. The parameter r is given by
r=N[J;, J,;]J and N[J;, lJ is normalized to l. In the r=1 limit, Wigner's semicircle law is recovered.
The results are extended to complex asymmetric matrices.

PACS numbers: 02.50.+s, 05.90.+m

The statistical properties of the eigenvalues of large
random matrices have been the focus of great interest in

mathematics and physics. ' One of the well-studied en-
sembles is the Gaussian ensemble of real symmetric ma-
trices. In this case, the average density of eigenvalues
p(x) is given by the celebrated Wigner semicircle
law' '.

p(x) =(2tr) '(4 —x )' ~x ~
(2,

and p(x) =0 for ~x ~

~ 2. Here we normalized the
second moment of the matrix elements to be [Jt]=N
N being the dimensionality of the matrix.

In this Letter we study the average distribution of ei-
genvalues of a Gaussian ensemble of large real and com-
plex asymmetric matrices. Ensembles of fully asym
metric matrices, where J;J and Jl; are independent ran-
dom variables, have been studied previously. ' It has
been shown that in this case, the average eigenvalue dis-
tribution is uniform in a disk, in the complex plane, cen-
tered at the origin. This result is generalized in this pa-
per to matrices with arbitrary correlations between J;I
and J,;.

The statistical properties of random asymmetric ma-
trices may be important in the understanding of the be-
havior of certain dynamical systems far from equilibri-
um. One example is the dynamics of neural networks. s

A simple dynamic model of neural networks consists of
N continuous "scalar" degrees of freedom ("neurons")
obeying coupled nonlinear differential equations ("cir-
cuit equations"). The coupling between the neurons is
given by a synaptic matrix J;~ which, in general, is asym-
metric and has a substantial degree of disorder. In this
case, the eigenstates of the synaptic matrix play an im-

portant role in the dynamics particularly when the neu-
ron nonlinearity is not big.

%e study an ensemble of Xx& real asymmetric ma-
trices J;I defined by a Gaussian distribution with zero

mean and correlations

N[J;1]J=1, N[J~)Ji;]J =r, (2)

P(J) eeexp
jv Tr(JJT —rJJ)

2(1 —")
where J~I=JI, . This measure implies for the diagonal
elements N[J;;]J=1+r. In the large-N limit, the diago-
nal elements give only an O(1/N) contribution, so that
the substitution J;;=0 (which is often the case in dynam-
ical systems) will not modify the results in the N
limit.

Let us denote by p(co) the average density of eigenval-
ues at the point co =x+iy The main re. sult of this paper
is that, in the N eo limit, p(co) is given by

(trab) ', if (x/a)2+(y/b)2(1;
0, otherwise; (4)

where a =1+r and b =1 —r. In other words, the aver-

age density of eigenvalues of the ensembles of large ran-
dom asymmetric matrices defined by Eqs. (2) or (3) is
uniform in an ellipse, in the complex plane, with semi-
axes a (real direction) and b (imaginary direction). In
the case of fully asymmetric matrices, i.e., i=0, the el-
lipse degenerates into a unit circle.

We note that the projection of p(co) on the real axis

for i ej and —
1 ( r ~ 1. The brackets [ ]J denote

ensemble average. The case r=1 corresponds to the
well-studied ensemble of symmetric matrices. The case
r =0 corresponds to the fully asymmetric ensemble in

which Jv and Ji, are independent, 4 and r= Icorre--
sponds to an ensemble of antisymmetric matrices.

The correlations (2) can be derived from a Gaussian
measure,
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FIG. 2. Histograms of the projections of the distribution on
the imaginary and real axes, p~(y) and p„(x),for N =200 and

The full line is the generalized semicircle law [see Eq.
(5)l.

FIG. l. Numerical results for the distribution of eigenvalues
for N 200. (a) r= —,'; (b) r=0; (c) r= —

—,'. The number of
samples is 38, 50, and 25 for (a), (b), and (c), respectively.
Each distribution is centered at the origin of the complex
plane. The horizontal and vertical directions are the real and

imaginary axes, respectively. The full line shows the ellipse
predicted by Eq. (4). For graphical reasons we have rescaled
the axes of (b) by a factor of & .

is less than the average level repulsion. s In the following
we outline the deviation of Eq. (4).

It is convenient to define the following Green's func-
tion:

6(r0) =—Tr1

N Ico —J

where I is the identity matrix. This quantity is defined

leads to a generalized semicircle law. .

= 2p„(x)=— dy p(rv) = (a' —x') '",
aJ XQ

IxI ~a,

(5) 101

where a =1+r. Obviously a similar law exists along the
imaginary axis, i.e., for ps(y). As expected, in the limit
of symmetric matrices, r=l, p(rv) b(y)p„(x) where

p„(x)reduces to Wigner's semicircular law, Eq. (1).
In Figs. 1 and 2 we present the results of numerical di-

agonalization of random asymmetric matrices with N
=200. As can be seen, the agreement between the nu-

merical results and the analytical predictions (for
ee) is very good. The only significant deviation is

the nonuniformity of the density of states near the real
axis. In fact, the observed density of states on the real
axis is higher than the average density, whereas the den-

sity slightly above and below the real axis is less than the
average. To check that this nonuniformity is a finite-size
effect, we have measured the average number of real ei-
genvalues for different sizes N (N=50-400). The re-
sults, presented in Fig. 3, clearly show that the excess
density of real eigenvalues vanishes as N ~ (roughly
as N '1 ). The origin of this excess density is the fact
that the level repulsion of eigenstates near the real axis
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FIG. 3. Numerical results for the average fraction of real
eigenvalues as a function of N for v=0. The line shows the

slope —0.5.
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for all complex values of co, except for the eigenvalues of
J;~. Expanding J;~ with the help of a set of right and left
eigenvectors, one obtains

G(co) =—g = d'X P (x)
g e —

X, " e —
A.

'
J

where p(X) is the average density of eigenvalues X of l J
in the complex plane. Equation (7) suggests an analogy
with two-dimensional classical electrostatics. To show
this, we integrate G(co) around a region 8, assuming
that no eigenvalue lies on the border Mt:

(7)

d'co p(co). (9)

Since the region R is arbitrary, it follows that the vector

E,=2ReG, E» = —2ImG,

obeys the classical equation of electrostatics, i.e., there
exists a potential + satisfying

2ReG = —cia/|ix, —2ImG = —ci@/ciy,

which obeys Poisson's equation:

v'e = —v. E = —4~p. (12)

To evaluate p(co) one has to know G(co) in the region
where p is not zero. In general, it is not possible to
evaluate G(co) by analytic continuation from outside this
region because, in the language of electrostatics, the
charge distribution is not completely determined by the

co 1
"

dco 1
. G(co) =—g~& 2ni N q && 2@i co —X

~ J
1 d'~ p(~). (S)

N Xeg J
Noting that dco/i =dy id—x is the normal vector to 11%

and applying Gauss's law, one finds
r

1 ~
2 ci

d N G(N)+l G(N)2z" & x

value of the electric field outside the charged region.
This implies that G(co) cannot be calculated by pertur-
bative methods. To demonstrate this point let us expand
Eq. (7) in powers of J,

G(co) =—1+ QJ;;+,QJ;,JJ;+1 1 1

Q) Nco i N~ i,j J

(13)

4(co) = —1/N [in det((Ico —J ) (Ico —J) ) l j. (15)

With use of the properties det(AB) =detAdetB and
detAT=detA, it is easy to check that @ given by Eq.
(15) satisfies Eqs. (6) and (11). Since l;J is real, the
matrix in the determinant of Eq. (15) is positive semi-
definite. Thus, in order to avoid zero eigenvalues, which

simply correspond to the case that co is an eigenvalue of
J;J, we add a diagonal matrix eb;J where e is positive and
infinitesimal. We may, therefore, represent the deter-
minant by a Gaussian integral over complex variables:

If we consider, for example, the fully asymmetric case
we have [J;,J,;lJ=O, so that the expansion (13) yields
G(co) =1/co, in the N ~ limit, to all orders in J.
However, this result is not valid everywhere. In fact, Eq.
(4) implies that for z=0,

~', ~f l~l ~ i;
G(~) =— =' . (i4)z~ I&l(& co —k, l/co, if lcol ~ i

We note that 1/co corresponds to the two-dimensional
Coulomb law, and co corresponds to a linear electric
field inside a homogeneously charged disk. Thus Eq.
(14) shows that the perturbative result is valid only in

the region where p =0. Note that G(co) is not an analyt-
ic function of co inside the disk. It should be stressed
that in the case of symmetric (or antisymmetric) ma-

trices the charge is concentrated on a line and, therefore,
analytic continuation can be used to evaluate G(co) and

p(co) everywhere.
The starting point of our approach to determine the

spectrum of asymmetric matrices is the calculation of
the electrostatic potential + defined as

d'z;
e(co) =—ln 4 exp, —eZIz; I' —Zz;*(co*aik Jif)(coBkj Jkj)zj .

i ij,k

In writing Eq. (16) we have assumed that the average and the ln operations in Eq. (15) commute, in the N ~ limit.
We have proved that this is indeed the case using the replica method as will be mentioned at the end.

Carrying out the average over the distribution of J~, Eq. (3), and neglecting O(1/N) terms, we find
r r

d z
exp(NN) =& Q exp Ner+ln(1+r)+— +

7E 1+r I+ z 1+r 1
—z

where r = (I/N)P; z;z;* and co =x+iy Equation .(17) can be rewritten as an integral over a =1/r,

exp(N+) =
~ exp N —+ ln(a+ 1)+— +N t d X 3'

r(N)» o.+1+r can+1 —r
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Note that for the convergence of the integral we need
e & 0; otherwise it diverges logarithmically at o=0.

The integral (18) can be evaluated in the N ee limit

by the saddle-point method. The saddle-point equation
for cr is

I+o (o+1+r) (o+1 —r)
From Eq. (11), the Green's function is given by

G(co) =x/(o+1+ r) ty—/(o+ I —r),

(19)

in the e 0+ limit. It is readily seen from Eq. (19) that
there is a unique saddle point between the two limits
a=0 and o =ee. We are interested only in the value of
this saddle point for e 0+. The behavior in this limit
depends on the value of x and y. Expansion of e in

powers of o yields

X 2

e =o 1 — — +O(o )(1+r)' 1
—r' (21)

P(J) ~exp Tr(JJ —2RerJJ) (23)

In other words, the average density of states depends
only on the moments N[~ J~ ~

]J=l and N[J) J~;]
=

~
r

~
e ' . Using the same method as described above

we obtain that the average density of states, in the com-

Thus, inside the ellipse whose semiaxes are a =1+r and
b =1 —r, the saddle point is at cr- Je and G is given by
Eq. (20) with o=0. Qn the other hand, for (x,y) out-
side the ellipse, cr remains finite as e 0+, and is given

by the solution of Eq. (19) for e=0. From Eqs. (19)
and (20) one can check that outside the ellipse the par-
tial derivatives of G satisfy the Cauchy-Riemann equa-
tions. Therefore, to evaluate o and G outside the ellipse
we solve Eq. (19) and (20) (with e=0) for the special
case of y =0. Then, by use of the analyticity of G in that
regime, the full result is recovered by analytical con-
tinuation, i.e. , by replacement of x by co. This yields

(co/2r) [1 —(I 4r/ro2) 'l2—], outside,

x/(1+ r) iy/(1 —r)—, inside.

Insertion of this result into Eqs. (10) and (12) leads to
Eq. (4).

The result (4) can be generalized to an ensemble of
Gaussian complex asymmetric matrices. In this case,
the invariant Gaussian measure is

plex ensemble, is uniform inside an ellipse which is cen-
tered at zero and has semiaxes a =1+

~
r

~
in the direc-

tion 0 and b=l —
~ r~ in the direction 8+x/2, and is

zero outside.
Finally, let us comment about the validity of Eq. (16).

The average in Eq. (15) can be performed with the repli-
ca method, i.e., [Inx]J =lim„o([x"]J —1)/n T. his re-
quires integration over n complex Gaussian variables
[z I, a =1, . . . , n, instead of one variable as in Eq. (16).
However, we have checked that at the (N~ ee) saddle
point the coupling between the different "replicas" van-
ishes and the replica integral collapses into n integrals of
the form (16).

Concluding, let us mention that it would be interesting
to extend the present study to more complex statistical
properties such as the form of the joint probability distri-
bution of the eigenvalues of random asymmetric ma-
trices as well as the distribution of level spacing in the
complex plane. It should also be noted that although we
have discussed explicitly the Gaussian ensembles [Eqs.
(3) and (23)], one can show that the results (for the
N ee limit) are valid for much broader classes of en-
sembles satisfying Eq. (2).
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