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Critical Behavior of the Electrical Resistance and Its Noise in Inverted Random-Void Systems
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A computer simulation of a representative continuum system, the inverted random-void model in three
and six dimensions, is reported. It is the first such simulation where the local geometry of the conducting
particles is taken into account. The results show that the critical behaviors of both the electrical resis-

tivity and the resistance noise, near the percolation threshold, are well described by the recently suggest-
ed models of links in the nodes-links-blobs picture.
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The prediction of Rammal and co-workers' regarding
the universal behavior of the resistance noise in percolat-
ing networks has inspired many experimental studies on

a variety of systems. These systems include various
thin films and composite materials in which the electrical
properties appear to be associated with a network formed

by the connection of conducting elements. At some criti-
cal density of the conducting-material phase, the concen-
tration of the conducting elements is sufficient for the on-
set of percolation. However, all the experimental studies
have shown a clear disagreement with the universal pre-
dictions of Ref. 1: While the electrical resistivity has ex-
hibited the expected universal behavior, the relative
resistance noise has exhibited a nonuniversal behavior.
In particular, the values of the resistance noise exponent,
tc, have been found to be much larger (2 to 5 times) than
the values predicted in Ref. 1. Garfunkel and Weiss-
man, 3 who noted that the experimental systems have a
distribution of resistor values, have attributed this
discrepancy to continuum corrections. Following them,
Rammal was able to predict such corrections, and

Tremblay, Feng, and Breton (TFB) presented a
comprehensive theory for the continuum corrections that
is capable of predicting the noise exponents in any given
continuum model. Indeed, the TFB theory seems to
qualitatively account for the experimental data as well as
to establish the validity of the continuum corrections ex-
planation. There is, however, considerable difficulty in

making a quantitative comparison of the experimental
data with the TFB theory. This difficulty is a result of
the fact that the structural features of the tested experi-
mental systems are usually not known in detail, and even
when they are known in enough detail, the corresponding
parameters (e.g. , u and v, see below), which are neces-
sary for a comparison with the theory, have not been
determined so far for any experimental system. Indeed,
no quantitative comparison of experiment and the TFB
model has been attempted. Furthermore, not only did
each experimental work report a different value for ~,
but even within groups of seemingly identical systems '

quite different rc values were found. This indicates that
the structural details are extremely important and one
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cannot compare experimental results with predictions of
general or idealized models. This situation is in sharp
contrast with the universal behavior (e.g. , electrical resis-

tivity in two-dimensional experimental systems ) where
the critical exponents are independent of the structural
details.

Following these considerations we applied a direct test
of the TFB theory by considering an idealized "experi-
mental system" which can be provided by a computer
simulation. We have used for the test an inverted
random-void system ' and compared the results quanti-
tatively with the predictions of the theory. 9 Another
motivation for this work is the fact that a study by com-
puter simulation makes possible a much more general
test of the theory, since systems of dimensionality higher
than 3 can be investigated. In particular, predictions '
of transitions from a universal to a nonuniversal behavior
of physical transport properties, as a function of the sys-
tem dimensionality, can be examined. As far as we

know, however, no previous simulation study of these
properties, in which the local geometry of the conducting
particles is taken into account, has been reported. In
previous computer studies predetermined global conduc-
tance distribution functions of the system were used, and

resistance values were randomly assigned to the resistor
network. The topology of the network was determined
separately and independently. " '4 This was also the
case in the computer simulation of the resistance noise,
which was reported in Ref. 9 for a two-dimensional sys-

tem. Hence, a simulation which better approximates
real systems (see below) by assigning resistance values
which are determined by the local structure of the net-
work (and in particular for higher dimensions) seems to
be long called for.

The inverted random-void model ' chosen for our
study is composed of conducting permeable spheres
(hyperspheres) which are randomly distributed in space
(hyperspace). In this model each intersection between
two permeable spheres has its own resistance. The value
of the resistance is determined by the degree of overlap
of the intersecting spheres (see below). In the simulation
we have used our previously reported procedure' for the
"implantation" of permeable spheres of radius a in a unit
cube (hypercube). If two spheres have some overlap
they are considered connected, and the onset of percola-
tion is at a concentration of spheres, N„which is associ-
ated with the formation of a continuous path of connect-
ed spheres between opposite faces of the cube. The vari-
ous "measured" properties of the system are then com-
puted as a function of N/N, —1, where N is the density
of spheres in the cube. In the present work we are in-

terested in the resistance of the cube, R, and the corre-
sponding relative resistance noise which is given by

r

Stt= g(Sr')i4 gn' (1)

Here r is the resistance of the bond between two inter-

secting spheres, (6r ) is the corresponding resistance-
fluctuation-correlation function, i is the current through
the resistor (i.e., the bond), and the sum is over all the
resistors in the network. One notes, of course, that for a
unit current between the opposite plane electrodes of the
cube (as will be assumed in the present work) the
denominator in Eq. (I) is simply R .

If in a continuum model, such as the one used here,
equipotentials are assumed throughout the intersecting
region of two spheres (the so-called "neck"9' ), one can
easily correlate both r and (hr ) with the neck geometry.
This has been done for r in Ref. 10, while for (Br ) one
can make the correlation by following' the argument
given by Wright, Bergman, and Kantor' for a network
of discrete resistors. The most concise argument, howev-

er, follows from the fact that the resistance fluctuations
of the individual resistors add up randomly. Hence, as in

random process, the squared variance, (Br ), divided by
the average squared, (r), is inversely proportional to the
number of elements in the system. If the elements are
the individual volume parts of a continuous slab of ma-
terial of volume V, one obtains that

(Br')/(r) ~~1/V. (2)

One notes that (r) is an average over one resistor and
thus it is the same as the r given in Eq. (1). If the bond
resistance depends only on one variable geometrical pa-
rameter e such that

and if the volume of the slab also depends only on e, such
that

V~ e"',

one finds that

(4)

(Pr 2) ~ e
—(2u +a) (5)

In order to apply the general expressions given by Eqs.
(3) and (5), one has to derive ' the values of u and v

for the system under consideration. In the present case
this is done by our taking the slab discussed above as the
"neck" region of the random-void system. Such a region
is illustrated in Fig. 1. As in other cases of spreading
resistance, the dominant resistance contribution is due to
the narrowest portion of the neck. This part is well ap-
proximated'0 by a cylinder with a length of the order
2(ae) ' and a radius of the order of (ae) ' . Since only
the parameter e varies from one intersection (neck) to
another, both r and V will depend only on this parame-
ter. It is easily realized that in a space of d dimensions,
ra:e' ' and Va:e . Hence for the inverted
random-void model the u and v values which should be
substituted in Eqs. (4) and (5) are

u =d/2 —
1
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FIG. 1. The geometry of intersecting permeable spheres.
The cylinder represents the region which yields the dominant
contribution to the resistance of the corresponding "neck."

and

v =d/2. (7)

10Q NQ 25000
10-' 10'

(N-Nc)/Nc

2a 0.15
N 27000

10-' 10o

In our simulation, N permeable spheres (or hyper-
spheres) of radius a are randomly implanted as described
before. For each pair of intersecting spheres the distance
between their centers b is determined, and thus the value
of e (=2a b) is r—ecorded. Correspondingly, the values
of (r) and (Sr 2) are found for each intersection by use of
Eqs. (3) and (5) (with a proportionality factor of 1).
After knowing the r values we find the currents in the
system. This is done by our solving the Kirchhoff equa-
tion' for the network of the resistors, the values of
which were determined as described above. In the
present work, the equation was solved by use of a precon-
ditioned conjugate-gradient algorithm'5 rather than our
previous inverse-matrix method, ' since the former en-
ables the solution of much larger systems. The pro-
cedures for finding the percolation threshold and the ex-
ponent which fits the data were previously reported, '

while the details of the above-mentioned algorithm will

be presented elsewhere. 's Finally, substituting the
values compared for r, (Br ), and i in Eq. (1) we found R
and SR of the sample.

One notes that in our determination of r and (br ) we

use an idealization of real systems, since we estimate
these quantities by the geometry of the cylindrical necks
and consider multiple overlaps of spheres as separate
overlaps. Close to the percolation threshold, however,
these simplifications are expected to play a minor role.
The neck approximation becomes better the smaller the
overlap (i.e., the larger the resistance), and we know that
close to N, the larger resistors determine the critical be-
havior. ' The multiple overlaps also represent parallel
connections of resistors which form "miniblobs. " Since
both the effect of the blobs and the average critical num-
ber of bonds per sphere' (4.5 in 2D, 2.8 in 3D, and 1.3
in 6D) decrease with dimensionality, the importance of
these effects on the resulting values of R and SR de-
creases with dimensionality and proximity to the thresh-
old.

FIG. 2. The dependence of the sample resistance (open cir-
cles) and the relative resistance noise (filled circles) on the
proximity of the percolation threshold in three- and six-
dimensional inverted random-void systems. Each circle repre-
sents an average of ten different samples.

In the present Letter we show the results obtained for
three- and six-dimensional inverted random-void sys-

tems. This is done in order to check some of the predic-
tions of the continuum theories ' in distinctly different
cases. For example, one expects' a transition from a

universal to a nonuniversal behavior of the electrical
resistivity with increasing dimensionality. On the other
hand, the electrical noise should exhibit a nonuniversal
behavior in systems of these dimensions. To make the
best comparison possible we show here results which rep-
resent averages of ten large samples (of N, = 25 000 for
3D and N, = 27000 for 6D). These are the largest sam-

ples which we could generate at present. In Fig. 2 we

show the results which were obtained for the studied in-

verted random-void systems. The resistivity exponent
derived from the data for three dimensions (t =1.9
+0.1) is indeed the one expected for a universal behav-
ior'6 (t =2.0+ 0.1). The resistance noise exponent for
three dimensions is found to have the nonuniversal value
of x=4.4+0.2. This value is in excellent agreement
with x =4.56 [=1.56+(v+2u —I)/u], the value pre-
dicted by the TFB theory. 9 We should point out that we

have previously' ' confirmed the universal value of
x =1.56, which is expected from scaling considera-
tions. " For the six-dimensional hypercontinuum the
electrical resistivity exponent is found to be t =3.5 ~ 0.1,
compared to the value of 4.0 [=3.0+ (u —I)] to be ex-
pected' for such an inverted random-void system. The
resistance noise exponent is found to be v=5.5+ 0.2,
again agreeing well with the TFB result9 for this case,
x =6.0 [=2.0+v+1].
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We see that our present results do indeed confirm the
TFB theory and thus verify the validity of the links (of
the nodes-links-blobs picture) analysis in determining the
critical behavior of the electrical resistance and its noise.
We note that our three-dimensional results for v, while
being in excellent agreement with the TFB theory, is in
disagreement with the prediction of Rammal, x =3.7
[=2.67+(2u+v —2)]. Since Refs. 8 and 9 differ only
in the two-dimensional random void and the (identical)
three-dimensional inverted random-void prediction for K,
we can state that our result supports the TFB analysis.
(In other dimensions and models, the corresponding
differences' between the predictions of Refs. 8 and 9 are
just of the order of (R —1.)

We note that our results for t and K are somewhat
smaller than expected for an infinite sample. This is not

surprising, since finite-size effects weaken the divergence
of critical behaviors near the threshold, in general, and
for electrical properties in particular. ' ' ' ' Indeed, ap-
plication of the simulations described here for smaller

samples (average of ten samples of N, =5000) yielded
t =1.8 ~0.1 in three dimensions and t =3.2 ~0.1 for six
dimensions. Comparison of these values with the above
values (Fig. 2) shows that for this quantity, the finite-
size corrections are almost unimportant in three dimen-

sions, and the values converge slowly to the expected
value in six dimensions. The same procedure for Ir (for
N, = 15000) yielded the values x. =3.8 ~ 0.2 in three di-

mensions and x =5.0~0.2 in six dimensions. Again,
comparison of these values and those reported here (Fig.
2) indicates that the direction of convergence is towards
the higher, expected values, as N, is increased. A more
detailed discussion of the finite-size effects and their ori-

gin will be given elsewhere. '

The proximity of our results to the predictions of the
TFB theory9 shows that the computer simulations do
indeed bypass the experimental difficulties which exist at
present. In particular, the "sensitivity" of the noise to
the current distribution makes the experimental results
more critically dependent (compared to the resistivity)
on factors such as the true dimensionality of the sys-

tem, heating of the narrowest necks, and parallel con-
duction channels. The large difference between the
critical exponents of seemingly similar experimental sys-
tems (compare the various results derived in Ref. 3) is a
further demonstration of the sensitivity of the critical be-
havior to the exact neck-size distribution function. Our
results indicate, however, that a true inverted random-
void system should exhibit the theoretically predicted be-
havior. The experimental systems which closely resem-
ble the inverted random-void system are those in which

the onset of percolation is associated with the coales-
cence of conducting particles. ' Indeed, a universal
behavior of the electrical resistivity has been found in

these systems, and the suggested value of x derived
for one of those systems, the Mo-Alp03 granular com-

posite [~=[(Q—2)t] =4.6], is very close to the predict-
ed and presently found value of a. =4.5.

In summary, we have carried out a simulation of con-
tinuum systems in three and six dimensions. We found
that the critical behavior of the electrical resistivity
changes from universal to nonuniversal with increasing
dimensionality. We have also confirmed (for dimen-
sionality higher than two) that the inverted random-void
systems will show the expected nonuniversal behavior of
the resistance noise.
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