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Model for Spiral Wave Formation in Excitable Media
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A model for the velocity of a wave front having a free edge and moving in an excitable medium is pro-

posed. It contains three main ingredients: a curvature eff'ect, a normal velocity-profile eA'ect at a free

edge, and a finite-width eA'ect. The model allows one to study the process in which arbitrary initial con-
ditions evolve into rotating spiral waves. Two new scaling laws, for the time to form a spiral s core and

for the distance between the cores of a mirror-image pair of rotating spiral waves, are numerically de-

rived.

PACS numbers: 82.40.Fp, 87.90.+y

Rotating spiral waves are robust patterns in excitable
media. They have been observed in chemically reactive
solutions, ' in the heart muscle, in the human brain, in

the retina of the eye, and in cultures of the social amoe-

bas Dictyostelium discoideum. 5 Their beauty, the chal-

lenging difficulties that their analysis presents, and their

physiological importance have attracted enormous at-
tention of both theorists ' and experimentalists. '

Though, in many respects, studies of spiral wave patterns
have been successful, there still remain important un-

resolved questions. One of these concerns the dynamical
process in which initial conditions develop into a spiral
structure. As yet, the physical principles and the dynam-
ical laws which govern this process have not been satis-

factorily traced.
In this Letter, we propose a model for the velocity of a

wave front having two free edges and moving in an excit-
able medium. Three principal physical ingredients are
taken into account: a diffusion-induced curvature effect,
a normal velocity-profile effect at a free edge induced by
tangential diffusion, and a wave-width effect. The model

allows us, in the first place, to propagate quite arbitrary
initial conditions into rotating spiral wave patterns, and

thus to demonstrate the process of spiral wave formation.
The model is further used to derive new scaling relations
between experimentally observable quantities. More
specifically, we find that the time t, to form a spiral's
core scales like the excitation rise time r, and is indepen-
dent of the diffusion constant D, the rehabilitation time

T, and the length of the initial wave front, I.. %e also
find that the distance R between the two cores of a
mirror-image pair of rotating spiral waves follows an ex-
ponential law of the form R/L =exp[A(v)u'], where

u =Dr/L, a=0.49, and A(v) is an undetermined func-

tion of v = T/r
"Excitable media" is a generic name for spatially ex-

tended systems in a stable steady state which are, howev-

er, susceptible to small perturbations. Consider, for the
sake of illustration, the following simple example of ex-
citable kinetics ':

fci = c2+3ci c1,

C2 =C1 8,
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FIG. 1. (a) Phase space for Eqs. (1) and (b) time signal of
the fast variable, c I, after excitation. The system evolves slow-

ly along the stable branches of the slow manifold. When it is

forced to leave the slow manifold, fast relaxation back to a
stable branch occurs. For more details see text.

where e is a small parameter and the overdot denotes
derivation with respect to time. The phase space of Eqs.
(1) contains a "slow manifold" defined by the nullcline
c2=3c1 —ci, and a fixed point S at (ci,c2) =(8,38
—8 ). The fixed point is stable (unstable) for

~
8

~
) 1

(
~

h
~
( 1). Suppose that S is stable and lies close to the

minimum of the slow manifold, as illustrated in Fig.
1(a). Consider now two points A and B in the vicinity of
S such that the vector field of Eqs. (1) points towards S
and away from S, respectively [see Fig. 1(a)]. A system
in S which is perturbed to A immediately relaxes back to
S. However, when it is perturbed to B a long excursion
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dX/dt =Ur+ os, (2)

where r" and s are, respectively, the normal and tangent
unit vectors. We will assume that the tangential velocity
at the free edges of the front is independent of time. For
the normal velocity we propose the following form:

U =c+
1 —wx

r

s l(t) —s
bexp ———+exp (3)

Here, c is the velocity of a planar wave front away from
an edge point, tc(s, t) is the curvature (by convention,
negative for convex fronts), w is a measure of the wave's

width, and l(t) is the wave front's length.

in phase space, independent of the exact location of B,
takes place before relaxation back to S occurs. A typical
time signal of the fast variable, c i (t), when the threshold
of excitation is exceeded is shown in Fig. 1(b). Notice
that after excitation the system spends a long time along
the left branch of the slow manifold (ci (8) where it is
not susceptible to small perturbations; we say that the
system is in its refractory period W. e use then name
"rehabilitation time" to denote the total duration, T, of
the excursion in phase space after excitation.

The combination of excitability and diffusive coupling
between adjacent volume elements gives rise to a variety
of traveling-wave patterns. '2 A characteristic feature of
excitable media is that any wave front is followed by a
refractory tail in which the medium is not reexcitable.
The width of the refractory tail is determined by the
refractory period and the front velocity. In two-
dimensional systems the most stable patterns are rotating
spiral waves. They form whenever a free edge of a prop-
agating wave front is created (hereafter an "open
front"). Open fronts are generally created by nonunifor-
mities in the medium: dispersion of refractory times,
phase gradients, impurities in chemical solutions, etc.

Consider now an open wave front whose position vec-
tor is X(s,t), where s and t are, respectively, arc length
and time, as illustrated in Fig. 2. The velocity of the
front can be written as

h(cr, t)=(q q) t q—= = s,
8X 8$ ~

Ba c)a

in terms of which the arc length is given by

(4)

The model is based on the following physical under-
standing. Diffusion acts to reduce (enhance) the normal
velocity of a convex (concave) wave front with respect to
the velocity of a planar wave front, and thus to stabilize
the front against small-wavelength perturbations. This
stems from the observation that a convex (concave)
geotnetry reduces (enhances) the diffusion fiux into an
area element ahead of the front and, consequently, a
longer (shorter) time is required for the diffusion process
to exceed the excitation threshold in that area element.
For the same reason, tangential diffusion at a free edge
of the front induces a normal velocity profile which im-

poses on the free edge a persistent bias to curl. The cur-
vature at the tip eventually saturates because of a finite-
width effect: The wave front is followed by a refractory
tail consisting of sites which are not reexcitable. When
the tip starts probing these sites curvature saturation be-
gins. A schematic illustration of these physical effects is
shown in Fig. 3. The numerator of the second term in

the right-hand side of Eq. (3) models the diffusion-in-
duced stabilizing effect described above. The parameter
a is positive and has the dimension of a diffusion con-
stant. The third term represents a simple modeling of
the velocity profiles at the two free edges, while the
denominator of the second term models, in a local
manner, the finite-width effect (see discussion below).
We note that for small curvature and away from an edge
point, Eq. (3) reduces to U=c+atc. Such an expression
can be rigorously derived from the original reaction-
diffusion equations. '3

Instead of solving Eq. (2) for x(s, t), we found it con-
venient to derive first a partial differential equation for
the curvature of the wave front. Once the curvature field
tc(s, t) is known the curve X(s,t) can be constructed.
The equation for the curvature is derived in the spirit of
Brower et al. '4 Since the tangential velocity cr is varying
between time-independent limits, o(s =0)= —crf and
cr(s=l)=+crf, it is convenient to reparametrize the
curve X(s, t) by a. To this end we introduce the metric

s(a, t) =„h(a', t)da'.
4 0'f

(0) (b) (c)
FIG. 2. Schematic illustration of an open front described by

a position vector X(s,t) and moving with a normal velocity
U(s, t) and constant tip tangential velocity oi.

FIG. 3. (a) Schematic illustration of the curvature elfect,
(b) the normal velocity-profile effect at a free edge, and (c) the
finite-width effect. The arrows indicate velocity vectors.
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We need now two equations for the two unknowns

x(o, t ) and h (a, t ). Considering the two-dimensional

space as the complex plane z =x+iy, we write

q = r)z/r)rr =h exp(i0), r =i exp(io), (6)

where 0(cr, t) is the angle between the tangent vector and

a fixed direction chosen to be the x axis (see Fig. 2).
Taking now the time derivatives of q once according to
Eq. (6) and once according to Eqs. (4) and (2) and us-

ing the curvature definition, x =88/Bs, we find

Bh/ri& =1 —hUx, (7a)

|1x
Br

1
K. + U

h2 tl

+~ex I aUah
+Ta p3 a a

We solve Eqs. (7) numerically using the Cranck-
Nicholson scheme. ' Figure 4 shows the time evolution

of a straight line. Symmetric initial conditions lead to a
symmetric pattern consisting of a mirror-image pair of
rotating spiral waves.

In order to relate the model to physical systems we

resort to dimensional analysis. Four important physical

parameters determine the dynamics and the structure of
the spiral wave (with the assumption that the initial con-

ditions are in the form of a straight line): L, z, D, and T.
Of these, only two have independent dimensions. The
time t, to form a core and the distance R between the
two cores of a symmetric pattern can therefore be writ-

ten as

r, =zf(u, v), R =Lg(u, U), (8)

where u=Dz/L and U=T/z are dimensionless vari-
ables. The functions f and g can be evaluated by numer-

ical integration of Eqs. (7) once the relations between

the model parameters and the parameters L, z, D, and T
are known. These are obtained by dimensional con-
siderations: c, b, af-(D/z)', a-D, d-(Dz)', and
w —T(D/z) 'i'.

For the evaluation of f(u, v) we define t, as the time
required to form a pattern similar to the third from top
shown in Fig. 4 (the results are insensitive to the exact
definition of t, ) W. e find that within an error of less
than a percent f(u, v) is a constant function. Different
u, v values lead to quite distinctive patterns, yet t, /z
remains the same. The distance R between the two cores
of a symmetric pattern is evaluated by our measuring the
horizontal coordinate of the spiral tip at two successive
patterns in Fig. 4 (third and fourth from top, for exam-
ple) and taking the mean value. Figure 5 shows a plot of
ln[ln(g)] vs In(u) at a constant v value. The numerical
data suggest the law g=exp[A(v)u'] where a=-0.49
and A is some (undetermined yet) function of v. Notice
that for large patterns (u~0) R/L~ 1. The parame-
ters L and z can be controlled in a continuously fed un-
stirred reactor type experiment. '6 Thus the predicted
forms of both f and g can be tested experimentally.

The model presented above is local. When the curva-
ture at the tip saturates on a value which is comparable
to or larger than w ', nonlocal effects become impor-
tant: The tip velocity is affected by the recovery rate of
sites which belonged to the front at earlier times and
were located at different arc-length values. We note,
however, that properties such as t, and R are determined

by the early stages of the spiral wave evolution and
therefore are not sensitive to these nonlocal effects.
Asymptotic properties, on the other hand, such as the
spiral wavelength, should be treated with caution. '7
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FIG. 4. Time evolution of a straight front having two free

edges.

In(uj

FIG. 5. Numerical data for the function g(u, v) =R(u, v)/L
taken at a constant v value. The solid line is a best fit of the
data by a straight line. The slope of the line gives the exponent
a.
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