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Coherent X-Ray Scattering by Phonons: Determination of Phonon Eigenvectors
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Interference effects have been observed when coherently coupled x-ray beams are inelastically scat-
tered by phonons in a crystal. The coherently coupled beams are prepared by dynamical diffraction
methods. This principle was applied to determine the phases of the phonon eigenvectors in silicon by an

analysis of the intensity of the inelastically scattered x rays.
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The interatomic force constants —central to the theory
of lattice dynamics of crystals —can be unambiguously
determined experimentally by the measurement of both
the frequency and the corresponding eigenvector of each
phonon mode. ' Phonon frequencies as functions of wave
vectors are obtained from inelastic neutron-scattering or
x-ray-scattering3 experiments. In these conventional ex-
periments, where the incident beam is describable by a
single plane wave, the phonon eigenvectors cannot be
directly determined because the scattered intensity is
proportional to the square of the modulus of the dynami-
cal structure factor f (K), which is complex in general
and contains the eigenvectors. Thus the phase of f (K)
and consequently the phases of the eigenvectors cannot
be retrieved.

In this Letter we demonstrate a method for the solu-
tion of this phase problem via the observation of co-
herent scattering by phonons. The coherence arises from
the use of probe beam which, instead of being a plane
wave, is a coherent superposition of two plane waves of
equal energies, and momenta differing only in direction
but not in magnitude. In order to observe coherent
scattering by phonons, we have (i) prepared the incident
beam of coherently coupled plane waves, (ii) set the
detector to detect x rays scattered from the sample crys-
tal by the phonons of a particular wave vector q, and
(iii) measured the intensity of the scattered radiation as
a function of the relative phase of the plane-wave com-
ponents in the incident beam. The phase dependence of
the intensity is the manifestation of coherent scattering
by phonons and can be used to determine the phonon
eigen vectors.

A silicon sample crystal, cut parallel to the (111)
planes, was used. This crystal itself generated the in-

cident probe beam of two coherently coupled plane-wave
photon states when the Bragg condition for a (111)
reflection was satisfied. For a perfect crystal the incident

and the Bragg-diffracted beam differ in momentum by a
reciprocal-lattice vector, overlap in space, are coherently
related, and are usually of similar strengths. The result-
ing wave field inside the crystal is of standing-wave na-
ture, the properties of which are given by the dynamical
theory of diffraction. 4 The phase tunability of the dif-
fracted beam and the associated movement of the
standing-wave antinodal position with an external con-
trol of the angle of incidence or the energy of the in-
cident x rays have been successfully used to locate atoms
inside the crystal56 and on crystal surfaces. 7s These
properties have also been exploited in recent experiments
to observe coherent Compton scattering.

The present experiments to observe coherent photon
scattering by phonons were performed at the ROEMO
station of the Hamburg Synchrotron Laboratory
HASYLAB at DESY in Hamburg with the storage ring
DORIS as synchrotron radiation source. A sketch of the
experimental arrangement, along with a reciprocal space
representation, is shown in Fig. 1. The first Ge(111)
monochromator crystal selected the desired energy from
the continuous synchrotron radiation spectrum. The
asymmetrically cut Si(111) second crystal was used to
collimate the exit beam to an angular divergence of —,

' of
the Si(111) natural reflection width [the slightly disper-
sive Ge(111)-Si(111)arrangement helps additionally to
suppress harmonics]. This monochromatized and col-
limated beam, a quasiplane wave, was directed towards a
symmetric Si(111) crystal from which scattering of x
rays by phonons was to be studied. The crystal was set
at the Bragg angle (Ha=9.09') corresponding to an in-
cident energy of 12.5 keV. The NaI detector was used to
monitor the elastically scattered (diffracted) beam and
the Si(Li) detector to detect the x rays inelastically scat-
tered by the phonons. The Si(Li) detector resolved the
Compton-scattered and the phonon-scattered peaks. The
method of controlling and stabilizing the angle of in-
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FIG. 1. Schematic layout of the experimental setup at the ROEMO station in HASYLAB and the k-space representation of the

scattering geometry.

cidence has been described elsewhere. ' The accepted
divergences of the inelastically scattered radiation were
restricted to below 3' in the plane of diffraction and 1'
in the plane perpendicular to it. The restriction on the
divergence is to obtain a final state with a well-defined
momentum and to ensure that scattering by phonons
from a single Brillouin zone is detected. The k-space
representation of the scattering is shown in the inset in

Fig. 1, where h is the reciprocal lattice vector corre-
sponding to (111) Bragg reflection, k and k' k+h are
the wave vectors of the incident and the diffracted beam,
respectively, and kf is the wave vector of the inelastically
scattered x rays. K =kf —k and K'=kf —k' K —h are
the scattering vectors corresponding to the incident and

Bragg diffracted beams in the crystal, respectively. g is
the reciprocal lattice vector defining the phonon wave
vector q. In the absence of coherence the detected inten-
sity is the sum of the intensities arising from the two
beams of wave vectors k and k', that is, corresponding to
the scattering vectors K and K', respectively. However,
for coherently coupled beams we expect the scattered
photon intensity to be the sum of the individual intensi-
ties arising from each beam plus interference effects in

those final states accessible from any of the incident
component states.

The results of measurements for two different phonon
wave vectors q around different reciprocal-lattice points
are shown in Fig. 2. Figure 2(a) shows the reflectivity
(R) and the intensities of the inelastically scattered
(thermal diffuse scattering, TDS) x rays as functions of
angle of incidence. Contributions to the TDS curve from
the incident beam (k), incident (k) plus diffracted (k')

beams, and incident plus diffracted beams plus interfer-
ence are shown by curves 1, 2, and 3, respectively. In the
strong reflection region the penetration of the incident
beam into the crystal is greatly reduced compared to the
angle of incidence outside the region. This effect is re-
sponsible for the reduced scattering yield at the middle
of the TDS curves. The difference in the shapes of the
TDS curves in Figs. 2(a) and 2(b) is basically due to
differences in the strengths of the interference term that
depends on the phase relations between the two scatter-
ing amplitudes. The variation of interference strength
for individual types of phonons —LA, TA, LO, and
TO—in a single group (a particular g and q) is also
reflected in the dissimilar asymmetry in their contribu-
tions to the total intensity [Fig. 2(b)]. (Some gross
features of TDS associated with Bragg diffraction have
been studied by Annaka. " However, as a result of poor
resolution of the detector, the contribution of Compton
scattering was not separable from that of TDS. More-
over, because of the allowance of a large divergence of
the scattered beam, the scattered radiation contained
contributions of a wide range of phonons from several
Brillouin zones. )

Having observed coherence in the x rays inelastically
scattered by phonons, one may proceed for the extraction
of the phases of the phonon eigenvectors. A method has
recently been proposed by Kohl' for the determination
of phonon eigenvectors from coherent inelastic neutron
scattering. We adapt this formalism to the case of
coherent inelastic x-ray scattering and obtain, for the
phonons of wave vector q in the vicinity of the
reciprocal-lattice point defined by g, the differential cross
section [from Eq. (B5) of Ref. 12],

do/dn =Cg r'[lf (K) I +
I A/~o I lf (K')

I
+2Re[(A/~o) f (K)f (K')]I (2rtq + I)/q,

where

f (K) g„f„M„'i (K eq" )exp(2niK R„)exp[—.W„(K)j (2)
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FIG. 2. (a) Measured reflectivity (triangles) for silicon (111) reflection and the intensity (open circles) of the x rays scattered by
phonons near the (911) reciprocal lattice point as a function of the angle of incidence. The corresponding convoluted theoretical
functions are sho~n by the dash-dotted and the solid lines. Curves 1, 2, and 3 represent the contributions of the first, first plus
second, and first plus second plus third terms in Eq. (I), respectively. (b) Measured (open circles) and calculated (solid line) inten-

sities of x rays scattered by phonons near the reciprocal-lattice point (1000). The partial contributions from different branches of
phonons are also shown. The curve marked "BCM" is obtained from the adiabatic bond-charge model as explained in the text.

is the dynamical structure factor or the scattering ampli-
tude, which contains the phonon eigenvector eq" of the
mode qo. The eigenvector e& in turn contains the phase
factor exp(i8), which determines the relative phase of
the motion of the particles in the unit ce11 and is depen-
dent on the interatomic force constants.

In Eq. (I), C is a constant which also contains the
number of atoms per unit cell. r is the effective penetra-
tion depth and is proportional to the number of unit cells

involved in the scattering. Eg/Eo is the ratio of the elec-
tric field amplitude of the diffracted beam to that of the
incident beam. This ratio is calculated as a function of
angle of incidence from the theory of dynamical dif-
fraction of x rays. ~Ei, /Eo~ is the reflectivity. The
phase of EI,/Eo is controlled experimentally by our
changing the angle of incidence. Re represents the real
part of the quantity in the square bracket. nq is the
mean occupation number of the phonon mode qa at the
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sample teinperature and is given by the Bose-Einstein
statistics. coq is the phonon frequency of the mode qtT.

The summation runs over all the phonon branches. The
scattering vectors K and K' have been defined previously
and are shown in the inset of Fig. l. In Eq. (2) f„, iM„,

R„, and 8'„are the atomic scattering factor, the mass,
the position, and the Debye-Wailer exponent of the pth
atom within the unit cell. eq is the phonon eigenvector
of the mode qo. (Theoretical descriptions of TDS have
been presented by Annaka, " and Afanas'ev and Azizi-
an. ' In the oversimplified treatment of TDS by Annaka
the importance of the phase relations between the
scattering amplitudes has not been considered, while in

the work of Ref. 13, besides its ignoring the contribu-
tions of the optical phonons, the phonon characteristics
have not been explicitly included. )

For an angle of incidence far away from the Bragg an-

gle (8&), the reflectivity is zero [see Fig. 2(a)], that is

Et,/Eo is zero. In this situation the second and the third
terms in Eq. (1) vanish and we obtain the usual cross
section for the scattering of a single beam (k). As we

enter the strong reflection region, in addition to the con-
tribution of the first term, the second and the third terms

begin to contribute. The second term represents the
cross section for the scattering of the second beam (k').
The third term accounts for the interference effects be-

tween the two scattered waves with different directions
of incidence. This interference term offers the possibility
of extracting the phase of f (K), and consequently the
phase of the eigenvector eq" .

The scattering cross sections were calculated with ex-

perimental phonon frequencies by Bilz and Kress'4 and

the theoretical eigenvectors with undetermined phases by
Pope. ' The phase factors exp(iZ) and exp(i8) in the
eigenvectors in the (111) direction for the transverse
(TA, TO) and longitudinal (LA, LO) phonons, 's respec-
tively, determine the relative phase of the motion of the
two particles in the diamond-lattice unit cell. The phases
X and 8 for silicon have been obtained by a nonlinear
least-squares fit of the calculated intensity to the mea-

sured ones, and found to be X=(155~10)' and 8
=(165+25)' for q ~ 0.13(2tt/a). For larger values of

q the one-phonon theory does not provide a good fit and

the contribution of two-phonon scattering' to the mea-

sured intensities has presumably to be considered in

more detail. A detailed report involving (111)and (100)
phonons for diflerent q values will be published else-
where.

The eigenvectors given by Pope' are based on Born-
von Karman theory taking interactions between each
atom and all its neighbors out to the sixth into account.
We have also calculated the eigenvectors that contain no
undetermined phases by the computer code of Nielsen

and Weber ' which is based on the adiabatic bond-
change (BCM) model. These eigenvectors showed poor
agreement in most cases. One example is shown in Fig.
2 (b), where under the experimental conditions the
inelastic-scattering cross section is very sensitive to the
phases of the eigenvectors. However, for a rigorous test
of the BCM model, more experimental investigations
would be necessary.

In conclusion, we have observed strong interference
effects in the inelastic scattering of x rays of coherently
coupled incident states by phonons. The strength of the
interference depends on the scattering conditions. It has
been demonstrated that the phases of the phonon eigen-
vectors, that is, the relative phase of the motion of the
ions in the unit cell, can be determined by quantitative
analyses of the scattered intensities.
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