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Modulated Phases in Thin Ferroelectric Liquid-Crystal Films
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We discuss modulated phases that can occur in thin liquid-crystal films composed of tilted, chiral mol-
ecules. While the phase diagram depends on all orders of a Landau expansion we find that either a
striped phase of parallel defect walls or a lattice of hexagonal unit cells containing disclinations and
bounded by intersecting walls can occur. The striped phase can occur with either a positive or negative
bend elastic constant depending on the underlying microscopic parameters. The transition into the
modulated phases is, in general, continuous with infinite defect separation at the transition.

PACS numbers: 61.30.Jf, 61.30.Gd, 64.70.Md

Considerable experimental effort in the area of liquid
crystals has focused on freely suspended smectic films,
which can be drawn into stable films only a few molecu-
lar layers in thickness. ' These systems provide an exper-
imental realization of many two-dimensional models of
critical phenomena, and an opportunity to study the
crossover from two-dimensional to bulk behavior by
drawing films of increasing thickness.

Many of these films are composed of chiral molecules
which form ferroelectric phases when the molecules are
tilted as in the smectic C phase. Because chiral mole-
cules have no inversion symmetry, the only symmetry of
these phases is a twofold rotation axis perpendicular to
the average tilt. As discussed by de Gennes and in

greater detail by Langer and Sethna, this reduced sym-
metry gives rise to new terms in the free energy, which

decrease the energy of certain defects in the molecular

ordering field so that for sufficiently large chirality the
defects have lower free energy than the uniform state. It
is of interest then to consider the formation of modulated

phases composed of regular arrays of defects. Langer
and Sethna, using a fixed-length director model, studied
one such phase, termed a striped phase, which is com-

posed of parallel, infinitely long defect walls (Fig. I).
Utilizing a nonfixed-length director model we study

the possible modulated phases in greater detail within

mean-field theory. We demonstrate that the bend elastic
constant decreases and may become negative as the

chirality increases, a phenomena which could not be an-

ticipated in a fixed-length model. A modulated phase

can form when the bend elastic constant is positive but
defects have negative energy. However, defects whose
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FIG. 1. A striped phase with Kb &0 composed of parallel,
infinitely long defect walls. The projection of the molecules
onto the plane of the film is denoted by the flaglike object,
where the pennant represents the bulge of the chiral molecule.
The vector c lies along the staff' of the flag, with its head fixed

relative to the pennant. Within the walls, symbolized by solid

lines, c varies continuously [see Eq. (2)] over a distance scale
o(~-') «L.

o

FIG. 2. A hexagonal phase composed of intersecting walls

and +1 and ——, disclinations. A +1 disclination lies at the

center of the hexagonal cell, and ——,
' disclinations are present

at each corner of the cell. Since three unit cells meet at a
corner, the intersection of the three walls at that point repre-

sent the core of a —
2 disclination.

1864 l988 The American Physical Society



VOLUME 60, NUMBER 18 PHYSICAL REVIEW LETTERS 2 MAY 1988

energy decreases with increasing chirality all have the
same sign for the component of i x c pointing toward the
defect where z is the normal to the film and c is the or-
der parameter. This implies strain between defects
which must be relieved by slow rotation, as in Fig. 1, or
by slow rotation and disclinations, as in Fig. 2. The hex-
agonal unit cell of the lattice in Fig. 2 has a +1 disclina-
tion at the center and —

—,
' disclinations at each corner,

and is bounded by defect walls. Another possibility is
that the uniform state is stable until the chirality is
strong enough to drive the bend elastic constant negative,
in which case the striped phase forms in a way very
different from that studied by Langer and Sethna.

Consider a Landau expansion of the free energy as a
function of the order parameter c =sinO(xcosp+ysinp),
where O is the value of the local tilt angle. A symmetry
analysis yields,

d'x{f, =
2 [(1—a)(Vxc)'+(I+a)(V c)']+w(c' —M')(Vxc), +u(c' —M')'+

where M is the value of I c I in the uniform state and f„
is the free-energy density therein. The ellipsis indicates
terms with higher powers of c —M or gradients. The
coupling w is a manifestation of the chirality of the sys-
tem and would be zero in a racemic mixture; the sign of
w is determined by the sense of the chirality. For
Z, —=w [u (1 —6) ] ' & 2 the uniform state is linearly
unstable to a mode parallel to the local ordering direc-
tion, corresponding to a bend mode. The bend elastic
constant, Kb, can be calculated from Eq. (I) by our as-
suming that the orientation c(x) is a given, slowly vary-

ing, function of x. Qur minimizing with respect to the
magnitude IcI yields c [M —(w/4u)(Vxc), ]c and
Kb (1 —&)(I —Z, l2). For small positive Z, —2 walls
with negative free energy can appear, described by the
order parameter

c =M {icos(Ap) —
y sgn(w) sinAp tanh[xx sin(Ap) ]],

(2)

with the assumption that the wall is perpendicular to the
x axis and centered at x 0, and that c changes by 2d,p
passing through the wall. The quantity x=M[2u/(1
—6)]'~2 is an inverse correlation length. The free en-

ergy of these walls per unit length is7 f„-(2
—Z, )sin 3(h,p) and, thus, these walls for 0 & d, p & m

(and a number of other defects) have negative free ener-

gy for Z, &2. This f includes surface contributions,
e.g. , contributions of total gradients V&&c in the elastic
energy. This result is different from f„JO—4Kq sind, p,
where Jo, K, q are constants derived from a simple
fixed-length model with defects by Langer and Sethna. b

For finite Ap, ( I c I

—M) and gradients of c are finite so
that the use of only the terms in the expansion shown in

Eq. (1) is illegitimate. Higher-order terms contribute of
order sin5(hp) to f and so walls with various h,p and
other defects have negative energies for different values
of the chirality. Likely values of hp for which the wall

energy is first negative with increasing chirality are (i)
small with a negative elastic constant and (ii)

&p=x/2, which must be an extremum for reasons of
symmetry. These are the possibilities considered in this
paper, although any Ap could in principle first have neg-
ative wall energy.

First consider Kb & 0. We assume that the modulated

states are composed of defects separated by distances
large compared to their core size so that we can use a
fixed-length c field in the area between the defects, and
absorb the length variations of c into core energies. In
the area between the defects we will write the elastic en-

ergy density as

f.i= —,
' K[(1+p)(V c)'+(1—p)(Vxc)'], (3)

where the splay and bend elastic constants are K,
=K(1+P) and Kb =K(1 —P) with K„Kb & 0. Textures
with point defects (disclinations) composed of negative
core energies can be constructed. However, scaling ar-
guments like those given below show that such states ei-
ther have a small number of disclinations in a film, how-

ever large, or have defects separated by distances compa-
rable to their core size. It is expected that uniform-
modulated transitions to such states are first order and
will not be considered further.

Consider the phases displayed in Figs. 1 and 2 which

can arise through transitions from the uniform state.
These transitions are continuous (for the hexagonal state
essentially continuous) and the wall separation is infinite

(very large) as the transition. We derive the free-energy
densities of these phases as functions of the chirality pa-
rameter Ap =p —p, where p is the chemical potential of
the minority enantiomer and p, is the value of p at the
phase transition. Subsequently we will discuss the com-
petition between these two phases.

The striped phase for Kb &0 has been discussed by
Langer and Sethna. b The total free-energy density rela-
tive to the uniform state has the form

A(~y, p) Ifw(~e) I

where L is the separation between walls, As is the elastic
free energy associated with the variation of c between
the walls, and fz -hp is the free energy per unit length
of the wall. The minimum of f„occurs when
L=2Ag/I fu I

—(dp) ' and has the value ft22/4Ag-
-hp . It is found that

2

As (p) = —,
' K „dp(1—pcos2p) ' (s)

The hexagonal phase shown in Fig. 2 requires that the
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first wall to have negative free energy is characterized by
Ap=z/2. The free-energy density of a unit hexagonal
cell relative to the uniform state has the form

free-energy density (6) can be written,

3 i fwz[21n(R/Rp) 1]

4& l„z(R/R

= 2
fhex = +H ln(R/Rp) +&H

3R
Ifw( /2) I

R

(6)

2AH

3fw
R

or R-
Ro

2AH

3fw

2AH

3Rpfw

(7)

where Rp =Rpexp( —,
'

AH/AH). —At that value of R the

where R is the length of the side of the hexagon. The
first term on the right-hand side of (6) is the elastic-

energy density due to the presence of both the +1 and
disclinations, each of which has core radius Rp.

The second term is the energy density associated with

the disclination cores and the remainder of the cell, while

the third term is the free-energy density of the walls.

Both AH and AH will be functions of the elastic anisotro-

py parameter P. The minimum free energy occurs when

Comparing (4) and (8), we see that as fw 0, the
striped-phase free energy is always logarithmically more
negative than that of the hexagonal phase. However, if
a(P)—:2J3A, (hp =z/2, P)/AH(P)» 1, then the hexago-
nal phase will be the favored state for essentially all
values of fw, i.e., ln(l/I fw I ) (a. For arbitrary P, AH
must be determined numerically. However, for P= ~ 1,0, AH(P) can be calculated analytically with the
results of Dzyaloshinskii. We find that a( —1) =2.00,
a(0) =3.62, and a(+ 1) =21.5. Thus for K, & Kb

(P &0), the hexagonal phase should be favored for a
wide range of fw. Thus mean-field theory predicts a
second-order transition to a striped phase, followed by a
(weak) first-order transition to the hexagonal phase.

Finally, consider the possibility that the uniform state
remains stable until Kb =0. Walls with a small value of
hp first have negative free energy fw-Kb. However,
from (2) we see that these small-angle walls have widths

large compared to x. '. On length scales greater than
' the magnitude of c can be determined from the lo-

cal spatial variation of the orientation c. Thus, we can
analyze a model dependent only on c. Since Kb & 0 we

must consider an elastic energy which includes more
than two gradients. The relevant terms are

d'x
2 [K.(v c)'+Kb(v«)'+G

I v«l '+H
I v(v«), I

']

A transition of Kb =0 requires that this elastic energy is bounded below by zero, when Kb & 0. As the term proportion-
al to K, is nonnegative this is the case when K, is large enough, e.g, for K, & IC, . The elastic energy is bounded below

F,i& 2 [Kbfb+(K, Ic,')f, ] d'x—= d'x ,' [Kb—(vxc)—'+(K, K,')(v c) ].— (10)

f=IrQI F, dx-,'e'—
where

dX

F3= dX —,
' [K,(~') +G@' +HA" ], (12)

@=Kb '
p and the prime indicates differentiation with

respect to X=xKbi . It follows from this dimensionless
form, provided F3 is bounded below by zero, that the
minimum off will be of order Kb -hp, that the spatial
period L will be of order Kb'i -Ap ', and that the angle

It follows that in the modulated state for Kb & 0,
f,/fb & IICb I/(K, K,') 0 as K—b 0. This is a very

strong constraint and appears to imply a striped phase.
If we consider a striped phase with Kb & 0 and p = 0,

the elastic free-energy density relative to a uniform state
is given by

p will be of order Kb'l -hp'l . These results should be
compared to the corresponding ones displayed after Eq.
(4) which are valid for the striped phase with p- I and
Kb & 0. In addition, the geometry of the director pattern
will be different from that shown in Fig. 1. The y com-
ponent of c is of order (dp) 'iz, and goes through a full
oscillation about zero over the distance L. Since the wall
width is of order L there are no sharp walls in this phase,
and the periodic pattern of c repeats without a discon-
tinuity at the stripe edge.

The free energy F3 can be negative when y=G /
K,H & 1. If so, other terms in the free energy are im-

portant, and defects in which the order parameter varies
on the length scale x. ' are expected. This can be shown

explicitly by partial integration of the term proportional
to G in Eq. (12) and the completion of the square yield-
ing

F = —,
' H dX(N" G~'/H) + —,

' K, (—1 —y)„dX(~') .
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The magnitude of the first integral can be made arbi-
trarily small compared to that of the second integral by
our choosing @(x) such that @" G—H '@'@=0 for
most of the region in which N'G/H & 0 and N slowly

varying elsewhere. As y 1, the oscillation of the y
component of c over the distance L becomes increasingly
asymmetric in a continuous way so that for y) 1 we re-
turn to the geometry of Fig. 1. Thus, despite the very
different behaviors near the transition the striped phase
is, in fact, a single phase.

In summary, we have studied modulated phases in thin
films composed of chiral molecules. While the behavior
of a specific system will depend on all orders of a Landau
expansion, we have calculated some properties of phases
with one- and two-dimensional modulation. The nature
of the transition to the striped phase depends on whether
it occurs when Kb & 0 or Kb =0. Besides the difference
in the critical value of Kb, there is different functional
dependence of the energy and wall separation on the
chirality parameter hp. For Kb )0, the striped phase
may have a higher free energy than a hexagonal phase
(Fig. 2). This hexagonal phase is a likely two-
dimensional structure as the wall length per unit area is
large relative to that of other two-dimensional structures
and the elastic energy is relatively small. However, the
hexagonal phase requires that a wall with hp =tr/2 have
negative free energy. Qther structures with different
wall angles may be possible, and would have the same
scaling behavior as that discussed for the hexagonal
phase. There is experimental evidence2b for a striped
phase in one chiral material, but it has not been studied
in detail. As our results depend crucially on all orders of
a Landau theory we cannot make specific predictions for
a given material and we hope that experimentalists will

study several chiral systems.
Finally, we emphasize that our discussion has been at

the level of mean-field theory. Upon the inclusion of
fiuctuations we expect the hexagonal phase to have only
quasi long-range order (i.e., power-law decay of correla-
tions), while the striped phase will be disordered because
of the Landau-Peierls instability. 'o However, we expect

that experimentally striped ordering will be seen if
K(hp)»kaT, i.e. , for thick films deep in the C phase.
These conditions lead to a large correlation length of the
stripe undulations compared to L. Thus our predictions
should be qualitatively correct except near the Kb =0
transition.
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