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Modulated Structures for Incommensurate Monolayer Solid Phases of D2 Physisorbed on Graphite
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Neutron and low-energy electron diA'raction at 2 K ~ T ~ 5 K are used to determine the structure of
three incommensurate (IC) solid phases for Dz on graphite. The a phase is a uniaxial IC solid phase
with striped domain walls due to strong substrate-induced modulation of the nearest-neighbor spacing.
The y phase is a rotated triangular IC phase with satellite diff'raction peaks due to modulation inter-
mediate between that of the a phase and the Novaco-McTague rotated IC phase which exists at higher
density.

PACS numbers: 68.35.Rh, 61.12.6z, 61.14.Hg, 67.70.+n

The modulation of the nearest-neighbor distance of an
incommensurate (IC) monolayer by periodic adsorbate-
substrate forces leads to several types of IC phases which
are theoretically understood and experimentally ob-
served. For spherical molecules on a triangular substrate
in the weak-modulation limit, the lower energy of trans-
verse modulations compared to longitudinal modulations
can produce a Novaco-McTague (NM) effect in which
the monolayer is rotated away from substrate high-
symmetry directions. ' In the intermediate-modulation
limit, there can be a continuous transition between non-
rotated and rotated triangular monolayer phases as the
number of molecules on the substrate is varied. In the
strong-modulation limit, a uniaxial IC (UIC) domain-
wall phase with completely different symmetry can
occur. '

We show here that the system D2 on graphite has a
UIC phase with striped domain walls of width less than
10 A for wall spacings between 20 and 40 A at T(6 K.
These walls are sharper than the widths deduced for Kr
and Xe on graphite ' or Xe on Pt(111). In addition to
the UIC phase, the D2 monolayer on graphite has a nov-

el intermediate phase at T( 10 K (called the y
phase ' ) which is a rotated and modulated triangular
phase with rotation angle greater than that of the
higher-density rotated IC (RIC) phase. Such an inter-
mediate phase has not been theoretically predicted and is

quite diAerent from the nonrotated triangular IC phase
seen in other systems. The RIC phase is rotated at
T=5 K approximately as predicted by the NM continu-
um theory. '

The commensurate (v3x J3)R30' (C) phase of the
02 monolayer has been experimentally investigated by
neutron diffraction, nuclear magnetic resonance, ' and

heat capacity. Until recently, the main information
available about higher-density phases was that a triangu-
lar IC phase was formed for o-D2 at higher coverages.
Recent heat-capacity measurements for IC densities
have indicated several intermediate phases, ' which
motivated the present diffraction measurements. The
fact that the y phase occurs for D2 and not for the iso-
topes HD and H2 (Ref. 7) which have larger zero-point
motion" suggests that the y phase is due to the less pro-
nounced quantum aspects of D2.

LEED measurements on normal D2 gas' were per-
formed in Seattle. A Kish graphite crystal and crystals
extracted from calcite gave identical results within ex-
perimental resolution. Room-temperature gas was ad-
mitted via a tube ending about 3 cm from the graphite
sample to minimize contamination due to impurity gases.
Diffraction patterns were observed with 62.5-eV elec-
trons incident within 3' of the surface normal. The elec-
tron beam was turned on only for 0.5 sec for each obser-
vation to minimize electron-induced desorption effects.
The coverage of the monolayer was changed by variation
of the gas flux. The monolayer density p (normalized to
1.00 for the ideal C density) was determined from the
diffraction pattern of the IC layer. The LEED
diffraction profiles in y and IC phases were limited by in-
strumental resolution and substrate perfection to 0.04

' (FWHM).
Neutron-diffraction measurements were performed in

Grenoble. Two forms of exfoliated graphite substrate
were used: Papyex and ZYX. ' Peak positions and rela-
tive intensities were identical within experimental errors
for the two substrates; some of the ZYX data are dis-
cussed in more detail elsewhere. The coverage n used
here is proportional to the amount of gas adsorbed on the
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FIG. 1. Reciprocal- and real-space diagrams for UIC and y
solid phases. In (a) and (b) the specular peak is denoted by
00; the first-order commensurate peaks by C; first-order graph-
ite peaks by G. Numbered peaks are discussed in text. (a)
Uniaxial IC (a) structure at p 1.126. Some peak displace-
ments from C positions are given in multiples of e. (b) D2 y
structure at p 1.25 considered as a triangular IC structure ro-
tated by 8 from the C direction. (c) Unmodulated real-space
structure of the UIC phase at p 1.126. Graphite-induced
modulation occurs along the horizontal direction. (d) Unmo-
dulated real-space structure of the y phase at p 1.25.

exfoliated graphite, with the proportionality constant
determined from the amount of gas required to produce
an IC monolayer having a known density. '

In the LEED measurements the diffraction peaks at 5
K became broader when the gas flux was increased above
the minimum necessary to produce the C pattern. When
the broad peaks could be resolved into component peaks,
the LEED pattern consisted of peaks 1-4 of Fig. 1(a)
from three UIC domains rotated 120' apart. These
peaks shifted continuously from the C position with in-

creasing flux. At the beginning of some experiments on
the Kish graphite, one UIC domain direction was more
intense than the other two, because of an anisotropic nu-
cleation process. This is a clear evidence that the a
phase is a UIC structure.

Single scattering from an unmodulated UIC structure
[Fig. 1(c)t would produce only peaks 3, 4, and 7 for the
region of reciprocal space shown in Fig. 1(a); these
peaks are displaced from the C peaks by e, 2e, and 3e.
Because theory predicts that the UIC phase exists as a
result of domain-wall energetics, s a modulated structure
is expected. '6' The wave vector of the modulation is

given by dashed vectors, such as the one from peak 7 to
G, which are added to peaks 3 and 4, giving peaks 1, 2,
5, and 6. Figure 2 compares the predicted positions

FIG. 2. Neutron-diffraction peak position (Q) vs square
root of coverage (Jn) for D2 at 2 K~ T~4 K. The solid
lines in the a, y, and RIC phases are positions predicted for the
peaks shown in Figs. 1(a) and 1(b). The dashed line in the a
region is that expected if this were a triangular structure. For
this graph the coverage n is normalized to the density calculat-
ed from Q at one coverage in the IC density range (Refs. 14
and 15). The vertical lines with phase identifications between
them are from LEED measurements at 5 K, except for the
vertical line at Wn 0.983 which indicates the coverage n at
which the C phase heat-capacity peak is maximum (n-1 in

Refs. 7 and 8). The a+y coexistence region shown is con-
sistent with the neutron and heat-capacity measurements.

(solid lines) with the observed positions of the neutron
peaks at 2~ T & 4 K.s'4's Interference from the 002
reflections from misoriented graphite crystallites
prevents accurate measurements for the shaded range of
reciprocal-space vectors Q between 1.85 and 1.90 A
The data are plotted as Q vs Wn to facilitate comparison
with data at higher densities. 9 (The main peak would
follow the dashed line if the a phase were a triangular
structure. ) The correct coverage dependence of the peak
positions in the a phase is additional evidence that the a
phase is a UIC structure.

For a UIC phase, the amount of the modulation can
be estimated for rigid walls if a domain-wall profile is as-
sumed. ' With use of the domain-wall profile of Gordon
and Landon, ' the domain-wall width was determined by
comparison of calculated intensities to observed neutron
intensities for peaks 1 + 2 and 3. The ratio of the satel-
lite intensity (1 + 2) to the main peak (3) for D2 on
Papyex ' and ZYX graphite' varied from 0.25+ 0.02
at n =1.06 to 0.08+ 0.01 at n =1.14, consistent with an
effective domain-wall width of about 10 A. Over this
range in n, the average wall spacing varies from 20 to 40

indicating that the domain-wall limit is realized
throughout the a phase.

As the number of molecules on the surface was in-
creased above n =1.14, a first-order transition was ob-
served to a new phase with different diffraction peaks,
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FIG. 3. Rotation angle (8) vs monolayer density (p) deter-
mined from LEED measurements for the y and RIC phases of
D2 near 5 K. The upper curve (a) is determined by the re-
quirement that the modulation wave vector of the y phase is

along the graphite symmetry direction as in Fig. 1(b); the
lower curve (b) is the NM result (Ref. 1) with the central-
force sound-velocity ratio. Error bars show typical measure-
ment uncertainties.

the y phase. The LEED pattern of the y phase consisted
of peaks I, 3, and 4 in Fig. 1(b). ' The y phase can be
described as a rotated triangular phase [Fig. 1(d)] with

modulation due to the substrate. The modulation wave

vector is indicated by the arrow pointing from 8 to G',
the orientation of the LEED diffraction pattern is such
that this vector is always along one of the graphite six-
fold symmetry directions to within 0.4' for the y phase.
This orientation leads to the curve of rotation angle 8
versus monolayer density p, curve a in Fig. 3, and causes
the LEED peaks 1, 3, and 4 for the + 8 domain to coin-
cide with peaks 1, 4, and 3 for the —8 domain.

In a first-order approximation, the positions of modu-

lation satellites" are obtained by addition of a star of
six wave vectors like that from 8 to G in Fig. 1(b) to the
mean lattice peak 4. The predicted satellite positions of
peaks 1-3 and 5-7 in Fig. 1(b) are plotted by solid lines
in Fig. 2 for the y phase. Two of these modulation satel-
lites (2 and 5) were clearly observed by neutrons. The
ratio of the satellite intensity (2 or 5) to the main peak
(3+4) was 0.5+'0.01 for 1.25 & n & 1.32. The absence
of any significant change in intensity ratio with density is

quite different than for the a phase.
The special rotation angle of the y phase produces

LEED and neutron-diffraction peaks at the same posi-
tions as for a hexagonal heavy-wall structure'; this im-

plies that the lateral modulation can also be described by
such a domain-wall structure. In the sharp domain-wall

limit, the peaks 1, 3, and 4 in Fig. 1(b) have equal inten-

sity for a hexagonal heavy-wall phase. ' The fact that
peaks 2 and 5 are the largest-intensity satellites, with an

approximately constant intensity relative to the main

peak, indicates that the domain walls in the y phase are

broad and overlapping. Thus it is more useful to think of
the y phase as a modulated triangular phase than as a
domain-wall phase.

As the number of molecules was increased above
n =1.32, the y phase was observed to coexist with a
higher-density RIC phase. One major difference be-
tween the y phase and the RIC phase is that the values

of 8 vs p deduced from LEED for the RIC phase at 5 K
(filled circles in Fig. 3) lie close to those predicted by the
NM result with the central-force sound-velocity ratio'
shown by curve b. (LEED data for the RIC phases of
H2 and HD, where no y phase has been found for T & 2

K, also lie close to curve b ').
In neutron diffraction the major difference between

the y and RIC phases is the absence of any detectable
satellites for the RIC phase. In Fig. 2 the expected sa-
tellite positions are plotted (solid lines) from the rotation
angle measured by LEED with a construction similar to
Fig. 1(b)." (However, the direction of the modulation
wave vector changes with density for the RIC phase as
expected from Ref. 1.) The apparent absence of
neutron-diffraction satellites in the RIC phase indicates
a smaller density modulation in this phase than for the a
and the y phases. This is consistent with the fact that
the rotation angles of the RIC phase approximately fol-
low the prediction of the NM model which assumes a
weak substrate modulation.

In the RIC phase separate LEED peaks are observed
for the +8 and —8 rotated domains. The presence of
LEED peaks analogous to 1 and 3 for the y phase in the
weakly modulated RIC phase indicates significant dou-
ble scattering at the LEED energy used. ' As the
change in the relative peak intensities in LEED at the
y-RIC transition is small, the LEED peak 1 in the y
phase is also due to double scattering.

In summary, we have shown that D2 on graphite pro-
vides a system which goes from the domain-wall limit (a
phase) to the weakly modulated limit (RIC phase) via
an intermediate-modulated solid (y) phase of heavy-wall

symmetry. The a phase is shown to be a UIC phase with

striped domain walls of width less than 10 A for wall

spacings between 20 and 40 k The y phase is the first
example where the modulation satellites are observed for
a rotated triangular monolayer phase. The detailed neu-

tron measurements of the satellite intensity cited above
provide important data for the theoretical modeling of an
oriented monolayer film beyond the weak substrate-
modulation limit. The RIC phase is oriented approxi-
mately as predicted by NM theory. ' The C-a transition
region is discussed elsewhere. '
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