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Pluralism in the Critical Phenomena of the One-Dimensional Continuous-Spin Ising Model
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A concrete example is given which shows that the one-dimensional Ising- and Gaussian-model univer-

sality classes do not exhaust the universality classes of the one-dimensional continuous-spin Ising model.
Thus the normal universality hypothesis fails in this simple, readily analyzable model.
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In the modern renormalization-group theory of critical
phenomena introduced by Wilson, ' the concept of uni-

versality, 2 i.e., "that apparently dissimilar systems show
considerable similarities near their critical points" or
more precisely, that critical problems can be divided into
classes differentiated only by the dimensionality of the
system and the symmetry group of the order parameter
(and perhaps other criteria), has been a key concept
which has permitted the computation by field-theoretic
methods of the universal critical properties of a repre-
sentative model in each universality class. There has,
however, to date been no proof of this universality hy-

pothesis in even the prototype model of the continuous-
spin Ising model. The antithesis is the corresponding
view of pluralism, i.e., that there exists more than one

such universality class. It has been noted5 that incon-
sistencies exist in the universality hypothesis, but some6
have contended that they are not serious (for example,
that they may be numerically invisible). The present
purpose is to give a concrete example of pluralism.

The model to be considered is the s, one-dimensional
continuous-spin Ising model. After the work of Isaac-
son and Marchesin, who showed that the continuum
(or critical point) limit of this model was identical to the
continuum limit for the pure Ising model, it was general-
ly supposed that there was no problem with universality
in this case. This notion was further reinforced by nu-
merical studies of the renormalized coupling constant as
a function of the bare coupling constant which showed
behavior precisely in line with that anticipated by Ref. 3.
The partition function for this model is defined by
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where K is the exchange integral J over kT, with k the Boltzman's constant and T the absolute temperature. The nor-
malization,

CH/N-kK sech2(K), Z/N-m e /kT, (- —,
' e

where CH is the specific heat at constant magnetic field H, X is the magnetic susceptibility, m is the magnetic moment,
and g is the true correlation length measured in lattice spacings. We will next see that for the case 0&gp& ~, the
model has quite different critical behavior.

To compute the properties of this model, I use the transfer-matrix method. The symmetric transfer matarix here is
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In the case where the continuum limit of this model (lattice spacing a goes to zero, with gpcLgpa K fixed) is tak-
en before the critical-point limit, Isaacson and Marchesin6 have shown that the first two eigenvalues are asymptotically
degenerate and widely separated from the rest of the eigenvalue spectrum. Their arguments are equally valid in the
present case in the limit K ~, and so I will need only to consider the largest two eigenstates of T(t,s). To obtain
thermodynamic ProPerties we need only'P limtv lnZ/N =Et.

=exp
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(1) (s )tt-p „s2exp( —As —
gps )ds exp( —As 2 —gps )ds, (2)

is used, which determines A as a function of gp. The special cases (gp 0, A —, ) and (gp ~, A/gp —2) are the
Gaussian and Ising models, respectively. This model (except for gp 0) has its critical temperature T, at zero
(K, =~). For the Ising-model case, its critical behavior is well known. Here as K
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From the second line of (4) we may write
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where the first inequality follows by the Cauchy-Schwartz inequality and the second from integration over s and noting
that when the integrand of one integral is larger at every point than that of another, then the integral is larger as well.
It follows directly from (5) that

[z/(1.5K+S —A)] '/2exp[(K —A) 2/4g l [1+O(K 2)](k ( (2z/K) '/ exp[(K —A) /4go],

where the upper bound is from Eq. (6). Thus I conclude
that asymptotically as K

ink| K /4gp —AK/2gp —
—,
' lnK+ O(1). (9)

From (9) we compute directly that

CH = kK2/2gp,

which corresponds to the specific-heat critical index a =2
instead of a = —~ for the Ising model. Here a is the in-

dex of divergence of CH. Later I will use v to denote the
index of divergence of the correlation length.

To compute the critical behavior of the true correla-
tion length, asymptotically as K ~, I use

I The degree of degeneracy between k| and A, 2 can be com-
puted by adaptation of a method of Thotnpson and
Kac. " First, however, I note that as remarked above, as
T(t,s) T( —t, —s), the eigenvectors are even or odd in
s and so by general principles the eigenvector for ll
satisfies %'1(s) %'1( —s). Let us now choose the trial
veGtor
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which is, by symmetry, orthogonal to %'1(s). Then by

(11) the Rayleigh-Ritz principal for the next largest eigenval-
I

g = —I/in(~g~, ).

IITII ~ (2~/K) '"exp[«-~)'/4go] (6)

By the Rayleigh-Ritz principle any vector I e) gives a lower bound for the largest eigenvalue kl as (~ I T I e)/
(e I @)~ Xl. Although by the symmetry of T, true eigenvectors are either even or odd in s, it is sufficient for the
present to select the trial vector

q'+(s) =(2S/x) ' exp —S[s —[(K—g)/2g ] ' j (7)

where S [(2K —A)(K —A)]'/. Then in the limit as K~ ac), if I evaluate the necessary integrals by the method of
steepest descents, I obtain
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where the second line follows from use of the second form in Eq. (12) and the (s, t) interchange symmetry of T(t,s).
By use of the method of Eq. (5) and the inequality'2

e"' e "dt ~ [x+(x'+4/z)' 'l ' (x) 0)4x
we can derive from (13)
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Thus from (11) and (15), we obtain a lower bound on (.
A bound on g from above can also be given. Use as a trial vector for Xl

e(s) =sgnm(s)%'q(s) =%'p(s)+ [sgnm(s) —1]ep(s),

where e'p(s) is the eigenfunction for Xp. Then by the Rayleigh-Ritz principle again
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Here I used the fact that @q(s) = —eq( —s) and I choose b = [(K—A)/2gp] ' Nand —c =b+2N. If N is of order
unity then

T(t, —,
'

(san+st)) ( —,
' T(t,s1)+T(t, sq)]

for t, sl, and sq in the allowed range of integration. In this range we may, to leading orders in K, approximate Oq by
~+ of Eq. (7), and replace T(t,s) by the convexity inequality just quoted to give
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where e) 0 is a small number of order e . Thus
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Hence, by (11), (13), and (19), neglecting corrections to leading orders, we have
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The significant structure of this one-dimensional mod-

el, as far as the limiting field theory is concerned, is iden-

tical to that of the Ising model7s and so leads to the
same limiting field theory for all 0 & gp( ~. However,
the behavior of the approach to the limiting theory is

quite different since e»e" as K ee. This difference
is consistent with the discovery of Nickel' that the criti-
cal value g of the normalized coupling constant is a
singular point of the Callan-Symanzik p function p(g),
where g* satisfies P(g ) =0. The point g=g* in the
continuum field theory must neccessarily be a point of
nonuniform approach in the K-gp plane for the Callan-
Symanzik functions. These functions are related to criti-
cal indices which vary with gp, but g g independent
of gp) 0 as K ~ in this model. Hence the occurrence
of a singularity is not surprising in light of the failure of
universality in the critical phenomena.

The model further illustrates the point' that hyper-
scaling is not just one question but at least two since the
Josephson-Sokal critical index relation d v =2a fails
while the hyperscaling relations can be shown to hold

(properly modified to account for T, =0 and (SIW) ~ ee

as K ~) for the higher magnetic derivatives by use of
the limiting field theory.
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