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Quantum Noise in the Parametric Oscillator: From Squeezed States
to Coherent-State Superpositions
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We compare the nonclassical states of light produced by a parametric oscillator for quantum noise of
different strengths. Increasing noise strength brings a transition from a slightly perturbed classical state
showing squeezing to a superposition of coherent states. We use the positive-P representation to illus-

trate the roles of quantum noise, quantum coherence, nonlinearity, and dissipation in this simple quan-
tum dynamical system.

PACS numbers: 42.50.Dv, 03.65.Bz, 42.50.Kb, 42.65.Ky

Recent experiments producing squeezed light have
added a new nonclassical light source to the few avail-
able, thereby rekindling interest in nonclassical states of
the electromagnetic field. The degenerate parametric os-
cillator has played a central role in studies of squeezing;
its Hamiltonian is intimately related to the infinitesimal
generator of squeezed states. Moreover, it enjoys the
distinction of having produced the greatest amount of
squeezing observed to date. '2

In a sense, however, parametric oscillators that pro-
duce squeezed light are almost classical; they are classi-
cal systems driven by a very small quantum noise—"small" in the sense (mathematically) that a linear-
ized treatment of the quantum dynamics is valid, and

(physically) that many photons are needed to probe the
system's nonlinearity. In this Letter we present a treat-
ment of the degenerate parametric oscillator valid for
quantum noise of arbitrary strength. Our approach is

based upon the positive-P representation. We find an
analytic solution for the steady-state positive-P function.
This solution is a function of two phase-space variables;
one variable is the "classical" field amplitude of semi-
classical nonlinear optics; the other is a "nonclassical"
variable needed to represent superpositions of coherent
states. When the positive-P function is plotted in three
dimensions the role of the nonclassical variable can be
clearly visualized. Distinct pictures emerge for the limit-

ing regimes of essentially classical behavior and predom-
inantly quantum behavior. This distinction is drawn
from the novel feature that the quantum dynamics is

naturally confined to a bounded manifold in phase space;
the extent to which the noise has sufficient strength to
probe the boundary provides a measure of the deviation
from a classical state. This bounded manifold provides a
beautiful illustration of the subtle way in which recently
reported anomalies in stochastic simulations based on the
positive-P representation may be resolved.

The degenerate parametric oscillator is modeled by
two quantized field modes, with frequencies co and 2to,
interacting via a Z susceptibility inside an optical cavi-
ty. Both modes are resonant with the cavity and experi-

da=[ —a —a~(X —a2)]dr+g(g —a )' dWt,

da~ = [—a~ +a (g —a~2 )]d7;+g (),—a ) ' d~
(2)

where dR't and d8'2 are independent Wiener incre-
ments, r is measured in cavity lifetimes (y, '), g=g/
(2y, yb) l, and k is a dimensionless measure of the
pump-field amplitude scaled to give the threshold condi-
tion X =1; y, and yb are decay rates for the cavity fields.
The complex variables a and a~ are associated with
operators a and at, respectively. Stochastic averages of
a and a~ give the operator averages g(a) and g(a ). In
the Glauber-Sudarshan representation a and a~ are
complex conjugates. In the positive-P representation
they are not, although they must be so in the mean.
More generally, normally ordered averages of quantum
operators are calculated from the positive-P function,
P(a, a, ), with

(a "a ) =g "+ d a„d a a"a P(a, a ). (3)

Equations (2) describe trajectories in a four-dimen-

ence linear loss. The cavity is excited by a classical
pump field with frequency 2co. The microscopic Hamil-
tonian takes the form

H=ih ,' g(a b—abt—)+i AC(bt —b)+Hi„„(1)
A A

where a and a t, and b and b t, are annihilation and
creation operators in the interaction picture; g is the
mode-mode coupling constant; 8 is the intracavity
pump-field amplitude; and Hh„describes losses in the
nonlinear crystal and at the cavity mirrors.

This nonlinear quantum-mechanical problem can be
mapped by an appropriate phase-space representation
into a classical stochastic process. The familiar Glauber-
Sudarshan P representation gives a Fokker-Planck equa-
tion without positive-definite diffusion. This difIiculty
can be overcome with the positive-P representation.
With mode b adiabatically eliminated we obtain the fol-
lowing set of Ito stochastic differential equations for the
complex amplitude of mode a:
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sional phase space. The region of phase space satisfying
the conjugacy condition a+ =a is designated the classi
cal subspace, since it is within this subspace that the
equations of semiclassical nonlinear optics evolve. Two
extra nonclassical dimensions are required by the quan-
tum noise. If we neglect dW1 and dW2, Eqs. (2) have
the stable steady-state solution a-a+ =0 below thresh-
old (k & 1); above threshold (X ) 1) this becomes unsta-
ble and two new stable solutions a as +'(X —1)'i2
appear. These are the steady states of the classical para-
metric oscillator. In the full phase space there are addi-
tional steady states which do not satisfy the

conjugalcondition: two steady states a a+ = + i (1 —X) '

below threshold, and two steady states a = —a+
~(X+1)'i2 both below and above threshold. These

additional steady states evidence a major reorganization
of the deterministic nonlinear dynamics in the expanded
phase space. This reorganization can lead to anomalous
behavior (unstable trajectories) in numerical simulations
of Eqs. (2) for large quantum noise (g) 1) . However,
respect for a reflecting boundary condition embedded in

the equations removes this difficulty; moreover, this ob-
servation leads to an analytic solution for the steady-
state positive-P function.

Consider the bounded manifold a x, as y, with x
and y both real and ix i, iy i

~ JK. We denote this
manifold by A(x,y). Stochastic trajectories starting
within this manifold must at first preserve a and a~ as
real quantities, since X, g, dW1, and dW2 are all real, and
the arguments of the square roots in Eqs. (2) are both
positive. It is a small step to conclude that, in fact, a
and as, remain real, and within A(x,y) for all time. To
escape from this manifold one of the square roots must
obtain a negative argument. The boundary of A(x,y) is
defined by the condition that one or the other square root
(noise term) vanishes. Since the stochastic trajectories

are strictly continuous functions of time, this boundary
must be crossed; it cannot be jumped. But noise trans-
verse to the boundary vanishes, and the deterministic
flow transverse to the boundary is directed inwards, as il-
lustrated in Fig. l. A trajectory reaching the boundary
can only move along the boundary under the influence of
the nonvanishing noise term, or return to the interior of
A(x,y) under the deterministic flow. Thus, trajectories
entering A(x,y) are confined within it. The vacuum
state (the natural initial condition), as well as all stable
steady states of the deterministic equations, is contained
within A(x,y). The unstable steady states and those re-
gions of phase space which can lead to unstable numeri-
cal trajectories lie outside. Qf course, unless directed not
to do so, trajectories generated by numerical algorithms,
taking finite steps, can jump the boundary; this opens the
possibility for the instabilities seen in naive simulations
of Eqs. (2).

The manifold A(x,y) is alternatively denoted by
A(u, v), with u —,

' (x+y), and v = —,
' (x —y). The line

v =0 is a one-dimensional classical subspace, the sub-
space preserving a as, . The variable v denotes a trans-
verse nonclassical dimension used by the noise to con-
struct manifestly nonclassical states. A vivid picture of
these states, and their dependence on the noise strength g
and pump A, , can now be drawn.

With a x and a+ y both real, the Fokker-Planck
equation corresponding to Eqs. (2) can be solved in the

(a)

(vs, ~x)
(b)

/ i X
y%

i(-~~, -v~)
(va, -va)

FIG. 1. Deterministic flow on the bounded manifold A(x,y)
for A, 0.5. The flow is symmetric about both diagonals
through A(x,y). The origin for the axes shown to the right is
located at the center of A(x,y).

FIG. 2. P„(x,y) plotted over the manifold A(x,y) for

g 0.2: (a) X 0.5, (b) k 2. A(x,y) is oriented with the
corner (Jk, —JA, ) to the front (Fig. 1). Peak widths are la-
beled for g&(1, showing that probability is concentrated well
away from the boundary of A(x,y).
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FIG. 5. P„(x,y) plotted over the manifold A(x,y) for g -5:
(a) A. 1, (b) X =5, and (c) X 15. The orientation is the same
as Fig. 2.

The two b functions that set x =y = + JK represent di-

agonal terms iEk/g)(JA. /g i
and i

—JX/g&& —Jl/g i in
the density operator for the subharmonic mode. The two

functions that set x = —
y = + JX represent off'-

diagonal or interference, terms e ei Jk/g&& —vX/g i

and e "g[ JA,/g)(- JA,/g i.
Figure 5 illustrates the behavior of P„(x,y) as a func-

tion of X in the strong-noise limit. When 4l/g «1, all 8
functions carry equal weight and the state of the subhar-
monic field is the coherent state superposition —,

' ( i JA,/g)
+

i

—WX/g)). As A, increases, this superposition state is
replaced by a classical mixture of coherent states

i Jk/g) and i

—JX/g) for 4X/g »1. The disappearance
of the interference terms is a consequence of competition
between the creation of quantum coherence by the two-
mode interaction Hamiltonian and the destruction of this
coherence by dissipation. It is known that the decay of
quantum coherence for a damped harmonic oscillator
prepared in a superposition of coherent states occurs at a
rate depending on the phase-space separation of the
states. The separation 24K/g of the coherent states

i Jk/g) and i
—JX/g) increases with X. Eventually, the

rate of destruction of quantum coherence by dissipation
exceeds the rate of creation of quantum coherence by the
two-mode interaction.

What does it mean experimentally to achieve g=1?
With the nonlinear optical coefficien for Ba2NaNbsOis,
a crystal length of 1 cm, and a beam waist of 1.5 pm,
g=l requires a cavity finesse of 40x10 . This can be
achieved for mirror transmission losses; but normal crys-
tal losses are 2 orders of magnitude too large. If crystal
losses are to be accommodated, an increase of 2 orders of
magnitude in the nonlinear optical coefficient is required.
An experiment does not seem possible, then, with current
materials. However, we emphasize the general message
of our paper. The parametric oscillator provides an ex-
ample in which the transition from nearly classical to
manifestly quantum-mechanical behavior in a nonlinear
quantum dissipative system can be clearly visualized. A
similar transition also occurs in other systems. The laser
and optical bistability provide good examples. Although
we do not have an equally appealing presentation of
theory for these examples, experiments on these atomic
systems can certainly be designed to access the strong
quantum-noise limit.

Through the example of the degenerate parainetric os-
cillator, we have shown that the inclusion of quantum
fluctuations in nonlinear dissipative systems is not simply
a matter of adding noise to the nonlinear equations of a
semiclassical theory. Quantum dissipative systems can
exhibit manifestly quantum-mechanical states in the lim-

it of large quantum noise. Traditional thinking about
these systems is limited to small noise, where classical
states are only slightly perturbed.

This paper is based upon work by the National Sci-
ence Foundation under Grant No. PHY-84-18070.
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