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Stationary Two-Level Atomic Inversion in a Quantized Cavity Field
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A quantum mechanical analysis of a two-level atom in a coherently driven optical cavity is shown to
predict steady-state atomic population inversion. Semiclassically this is forbidden because of the factori-
zation of operator-product expectation values. The full quantum theory is much richer and diN'erent

field states may be correlated with diA'erent atomic states. One consequence is that damping of the cavi-

ty field allows atomic polarization to be transferred from higher to lower field states and thus steady-
state inversion becomes possible.

PACS numbers: 42.50.Wm, 42.50.Dv, 42.50.Kb

Some of the physics of the electromagnetic field defies
classical explanation and can only be understood by our
treating the field quantum mechanically. Photon anti-
bunching' is an early example. More recently quantum
mechanical collapses and revivals in high-Q microwave
cavities2 and squeezing3 experiments, which may mea-
sure the electromagnetic field commutator, have generat-
ed great interest. The example I consider here is the in-

teraction of a single two-level atom with a weak quan-
tum mechanical field in an optical cavity. This system
has recently been shown to exhibit antibunching, squeez-
ing, and optical bistability. In the "bad cavity" regime
I find that when the cavity is illuminated by a laser the
system may reach a steady state in which the atom is in-

verted, that is, the excited-state population exceeds the
ground-state population. This is forbidden by the semi-
classical theory of the atom-field interaction, which
treats the field classically, and may only be understood

when both the field and the atom are quantized.
Let us consider two levels of a single atom resonantly

coupled to a single Fabry-Perot cavity mode. The excit-
ed atom spontaneously emits photons at rate y and the
cavity mode loses photons through the cavity mirrors at
rate 2x. To balance these losses the cavity mode is
driven by a resonant laser of amplitude such that in the
absence of the atom the cavity mode would equilibrate to
a coherent state of real amplitude E/x. In the weakly
driven, bad-cavity regime of this system we expect only a
small number of photons in the cavity. Our interest is in
such cases having quantum noise sufficiently large that
the semiclassical atom-field factorization assumption
breaks down.

The dissipation is modeled in a standard way by cou-
pling of the atom and the cavity mode to reservoirs
which are subsequently traced over. The resulting
interaction-picture master equation for the reduced
atom-field density operator p is

dp/dt =E[a —a,pl+g!:a o — acr+, p]—+Ldp,

Ldp= z y(2o —po+ —o+o —p
—pcr+o —)+x(2apa —a ap —pa a),

Y=n, '12E/x, n, =yt/8g2, C=g2/xy. (2)

Equations for the quantum mechanical expectation
values of the field amplitude (a), for the atomic polariza-
tion (cr —), which is real because of the various resonance
conditions previously stated, and for the inversion (o, )

where a and at are the cavity-mode boson annihilation
and creation operators, o+ and cr are the Pauli atomic
raising and lowering operators, and g is the atom-field
coupling constant. This master equation is particularly
worthy of analysis because it contains all the essential
physics of the system; driving, cavity damping, atomic
spontaneous emission, and atom-field coupling up to the
rotating-wave approximation. I use the conventional pa-
rameters: Y the scaled driving-field amplitude, n, the
saturation photon number, and C the single-atom version
of the optical bistability cooperativity parameter. They
are related to the parameters of Eq. (1) by

!
follow from the master equation (1):

d(a)/dt =E —x(a)+ g(cr ), —

d(o )/dt = —(y/2)—(o -)+2g(aa, ),

d(cr, )/dt = —y((cr, )+ —,
' ) —g&ato +o+a).

(3)

The usual semiclassical Maxwell-Bloch equations are ob-
tained from these by factorization of the operator-
product expectation values, (ao, ) (a)(o, ) and (a o —)

&a )(o —). This factorization is only strictly valid if
the field state is independent of the atomic state, ! total
state ) =! atomic state )! field state ), or in terms of the
density operator, p =p, t, 8ps, ~d. Alternatively the fac-
torization assumption can be seen as the neglect of quan-
tum noise. 9 With this assumption Eqs. (3) close and
may be solved to yield the semiclassical steady-state in-
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version

(cr, ) =— 12
(semiclassical),

1+n, (a)' (4)

where the mean inversion (cr, ) is half the difference be-
tween the upper- and lower-level populations. Hence
with the factorization assumption (o, ) (0 and no
steady-state inversion is possible. Einstein's A and 8
coefficient theory of light-matter interactions introduced
the processes of absorption, stimulated emission, and

spontaneous emission. '0 This theory follows from the
factorized form of the Bloch equations (3) on the as-
sumption that d(cr )/d—t 0. Then

d(cr,), Sg'= —y((~, &+ —,
' ) — g ( a')(a)(e, &. (5)

The first term on the right-hand side represents spon-
taneous emission while the term proportional to the field

energy density, (a t)(a), represents the processes of ab-
sorption and stimulated emission. These processes can
only increase (cr, ) if it is negative. If inversion is present
(cr, ) )0 and stimulated emission dominates absorption
until (cr, ) decreases below zero. However, as we shall

see, the full quantum theory in a cavity contains addi-
tional processes which may dominate those in the Ein-
stein theory, allowing steady-state inversion.

The solution of the master equation (1) is facilitated if
we make the canonical transformation to the so-called
vacuum picture.

D '(E/x)pD(E/x') p„,

D '(E/x)aD(E/x) =a+E/x,

D(E/. ) I o& =
I E/. &,

(6)

Compared to the original master equation (1) the
cavity-mode driving term has been replaced by an atomic
driving term. We shall solve the new master equation
(7) by taking matrix elements in the basis of Fock field

states and atomic eigenstates of cr„ I in, —), in, +)},
n =0, 1,2, ... . In the steady state dp„/dt =0 and we ob-

tain an infinite set of algebraic equations for the
density-matrix elements. These may be solved numeri-

cally by truncation at some sufficiently high Fock state
iN), yielding a set of (N+1)(2N+3) equations for the

same number of independent real density-matrix ele-
ments. Truncation has previously been used by Carmi-
chael to obtain approximate analytic solutions in the in-

teraction picture. The vacuum-picture master equation

where D(E/x) is the coherent-state displacement opera-
tor and i E/x) the coherent state of amplitude E/x. The
master equation (1) then becomes

Pv gE
tcr —cr+,p-„}+gta cr- —acr+, p,.]+Ldp, .

t K'

(7)

TABLE I. Steady-state, diagonal, vacuum-picture, density-
matrix elements in the basis of field Fock states and atomic
eigenstates of o, . Parameters are C 2, n, 0.01, and Y 20.
The column sums show an excess of population in the excited
atomic state.

&n, —ip„in, —
&

&n, —ip, , [n, —
& &n, +ip, , in, +& +&n, +ip, , in, +&

Sum

0.423
0.058
0.003

5x10
4x 10
1x1Q

0.484

0.485
0.030

6x10 4

5x 1Q

2x10
6x10

0.516

0.908
0.088
0.004
&10
&10 '
&10 '

is particularly suitable for truncation because in the ab-
sence of atom-field coupling, g 0, the vacuum picture
steady state is the vacuum state, p„ i 0)(0i. Of course
this corresponds to a coherent state in the interaction
picture, p iE/x)(E/xi. If the atom's presence per-
turbs the field only slightly we might expect only a few
additional Fock states to be necessary for an accurate
representation of p,„and this is in fact true in the regime
of interest to us.

Our criteria for acceptance of an N for truncation are
that the diagonal density-matrix elements be negligible
for n =N and that the solution does not change when N
is increased. The resulting solutions agree with those
found by the solution of the dynamical master equation
as described in Ref. 6. As a nonnumerical check I have
found agreement with the approximate analytic solutions
of Rice and Carmichael in the appropriate regime.

Table I shows the diagonal density-matrix elements of
a steady-state solution to Eq. (7) obtained with trunca-
tion N 5. This system is in the ground field Fock state
with about 90% probability and the probability to be in

any field state other than the first three, i 0), i 1), and

i 2), is less than 0.01%. Hence the truncation at N=5 is

valid. The parameters of Table I yield a steady-state
atomic inversion of (o, ) 0.016, corresponding to about
7% more population in the excited state than in the
ground state.

Having demonstrated the existence of steady-state in-

version for a particular example we now investigate the
physical mechanism responsible. First note that the
solution of the vacuum-picture master equation (7) with

the two-state truncation, l i 0, —), i 0, +)}, yields the
semiclassical inversion, Eq. (4), with (a) =E/x, the
empty-cavity field amplitude. Hence for atom-field cou-
plings sufficiently weak that the cavity field is nearly in

the empty-cavity state the two-state truncation approxi-
mates the semiclassical inversion. The level of approxi-
mation which enables us to understand the origin of
steady-state inversion is the four-state truncation,
(i0, —), i0, +), i1, —), i1, +)}. Figure 1 shows the
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TABLE II. Steady-state inversion (o, ) for various values of
C and n, maximized with respect to the scaled driving field Y.
The corresponding cavity finesse F and cavity length L are
given under the assumption of the sodium D transition and a
Gaussian-mode beam waist of three wavelengths.

gE

FIG. 1. The four states of the four-state truncation showing

directions of steady-state population flow due to the various
terms in the master equation (7). Parameters as for Table I.

0.5
0.5
1

1

2

2
12

n,

0.02
0. 1

0.02
0.1

0.01
0.05
0.001

840
840

1700
1700
3400
3400

20000

L (mm)

0.7
3.5
0.7
3.5
0.35
1.75
0.035

0.0049
0.0017
0.01
0.0015
0.016
0.006
0.028

steady-state population flows due to the various terms in

the master equation (7). The coherent flow, proportional
to gE/x. , from the less populated state IO, —) to the
more populated state IO, +) stands out as contrary to
semiclassical expectations. Semiclassically the atomic
polarization has the sign required to equalize population
differences, which is not the case here. Also the transi-
tion would be highly saturated making both the popula-

tion difference and polarization nearly zero. We can un-
derstand the reversed sign of the atomic polarization by
looking at the four-state-truncation quantum corrections
to the semiclassical picture. From the master equation
(7) a steady-state equation for the polarization is

l y&o,
—

I p I o, + &
= (gE/ ) &&0, + I p I 0, + &

—
&0, —

I p, I 0, —
&&

—
g&0,

—
I p, I 1, —&+ 2 &I, —I p, I 1, + &. (8)

Semiclassically we have only the first term, proportional
to the population difference. The second term is negligi-
ble in the present case. The third term arises from cavity
damping and represents the transfer of atomic polariza-
tion correlated with the

I
1) field state into the I 0) field

state, when the cavity mode loses a photon. When the
field is in the

I
1) Fock state the atomic state is not in-

verted and the atomic polarization has the sign to move

population upwards, as expected. When the cavity mode
loses a photon out a mirror this atomic polarization con-
tributes to that in the vacuum-picture ground field state
IO). Under highly saturated conditions and with most

probability in the vacuum-picture field ground state, this
transferred polarization may be sufficient to dominate
the small "semiclassical" polarization and thus change
its sign. Insofar as the four-state truncation is a good
approximation we now have a simple picture of the ori-

gin of steady-state inversion. Cavity damping transfers
"upward moving" atomic polarization into the inverted

ground field state, dominating the small semiclassical po-
larization. An analogous mechanism of transfer of quan-
tum coherence by a dissipative process, spontaneous
emission, is well known in the dressed-atom theory of
resonance fluorescence. '

Let us now consider whether the necessary conditions
for steady-state inversion are experimentally achievable.
The inversion only occurs for very small saturation pho-
ton numbers, n, &&1, corresponding to the strong atom-
field coupling associated with small cavity-mode volume.
Hence the spherical-mirror Fabry-Perot cavity will re-
quire tight focusing and a short length. If we take as our
transition the sodium D line, X =0.6 pm, y=6x10 s

the cavity finesse F=rrc/2Ltr and length L are related to
C and n, by

F= 187C(wp/k),

L =0.32n, ()t/wp) ',

where wp/X is the beam waist radius in wavelength units.
Table II shows the steady-state inversion achievable for
various values of C and n, by maximization with respect
to the driving field Y. The corresponding cavity parame-
ters are also given, with the assumption of a beam waist
of three wavelengths. For C =0.5 and n, =0.02 the cavi-
ty parameters are close to reported values. ' However,
the narrow beam waist required implies beam transit
times so short that only slow atoms will have time to
reach the steady state. Although I have not conducted
an exhaustive search for the largest inversion possible,
the final value in Table II, &o, ) =0.028, was among the
largest found. This preliminary analysis appears favor-
able and suggests that more detailed consideration of the
experimental feasibility is warranted.

I have presented accurate numerical solutions of the
fully quantum mechanical master equation for a single
atom in a weakly driven single-mode cavity. In the bad-
cavity regime the quantum noise is high, the semiclassi-
cal analysis fails, and the steady-state atomic inversion
becomes possible. The mechanism can be understood by
the consideration of those quantum corrections to the
semiclassical behavior which are explicitly due to viola-
tion of the semiclassical factorization assumption.
Specifically, atomic polarization is transferred to the
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semiclassically saturated ground field state by cavity
damping. A preliminary analysis indicates that steady-
state inversion might occur under feasible experimental
conditions. Extension of the present work to the case of
more than one atom in the cavity and to investigation of
possible laser action by the inverted atoms is both feasi-
ble and interesting.
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