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Strongly Coupled Charged Scalar in B and T Decays
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Limits on charged-scalar Yukawa couplings from r and 8 decays are discussed. They (and other ex-
isting limits) are consistent with "strong" couplings (-1 for the third generation) even if the lightest
scalar mass is in the range 20 GeV (Mq(100 GeV but saturated in this case. 8(8 rvX) and (for
M&) m, ) 8(T rvX) may be then as large as 30% and 70%, respectively. Both for M~(mi and
Mq& m& the potentially possible top-quark signature in pp collisions is i+2 jets Anal state. The upper
limit for r vga is =0.003%.

PACS numbers: 12.15.Cc, 13.20.Jf, 13.35.+s, 14.80.Gt

In most "beyond the standard" models several Higgs
doublets are present and consequently the weak forces
are mediated, in addition to the intermediate vector bo-
sons, by charged scalar particles. Models with two and
three scalar doublets have been explicitly studied and
some constraints on the quark Yukawa couplings have
been derived from K -K, D -D, and B -B mixing'
and from CP nonconservation. One appealing possibili-

ty is that in three- (or more-) doublet models the hierar-
chy of the vacuum expectation values is such that the
Yukawa couplings are of the same order for the mem-
bers of a given heavy generation and —I for the third
generation (we shall call such couplings "strong").

On the phenomenological side a recent thorough
analysis of the high-precision data on muon decay, in-
verse muon decay, tr12 decays, and nuclear Gamow-
Teller transitions shows that in those reactions the
effective scalar coupling might be of the order of 10% of
GF, provided it is proportional to the lepton mass.

In this paper we analyze the limits on the charged-
scalar couplings from the r and B decays. In three- (or
more-) doublet models with "natural" absence at the
tree level of flavor-changing neutral currents there are
two independent sets of Yukawa couplings, driving the
up- and down-quark masses, respectively. Our bounds
are consistent with both being —1 for the third genera-
tion and they are in fact saturated by such strong cou-
plings if the lightest scalar mass is in the range 20 GeV
(M&~100 GeV. In this case the branching ratios
B(B rvX) and (for M&) m, ) B(T rvX) maybe as
large as 30% and 70%, respectively. Thus, those chan-
nels are very restrictive for potential scalar exchange.

r decays. —Our notation (for effective couplings) is
shown in Fig. 1. We also define the effective scalar cou-

plings 6,

G J, t
= Y;,Yt/Me, Gt t

=Yt Yt/Me, etc. ,

and the ratios H,

GIJ, t/GF= Htq, t, G—t, t/GF =HI, I.L — L

H, ,„&0.22

provided that

Y, =m, /vt, Y„=m„/vt. (4)

With scalar exchange included, the rate for the decay

-1 Y (1-y )/2 = -i Y P

U
j

(Y, . P~ +Y, PR)

FIG l. Our notation for effective couplings.

As has already been mentioned, from the e-p sector one
gets the limit
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pvv reads

2 5GFm, . , 2 . m„ H, „
~ JZ(I+ —'H' )

m' m4
8 P +0

m,' m4
(s)

An analogous formula holds for r evv but because of Eq. (4) the scalar-exchange contribution is negligible as com-

pared to the contribution to i pvv. Now, the ratio

R = =0.016 0.037 (6)
I (s evv)

can be used to place a limit on H, „. Using Eq. (S) we have

2 2 2

R — ' + ' —8
2

1+HY p mp Ht, p mp Ht, p

m, 32 m, 32
(7)

In spite of the apparent correction the prediction in Eq. (10) cannot be distinguished from the one in the standard mod-
el provided Y,/Y„=m, /m„. Indeed, the pion decay constant f, is measured in the decay x pv whose decay rate is in
this case subject to the same (numerically) correction. Thus, presence of the scalar contribution leads to a rescaling of
f„but does not affect the standard-model prediction for r zv and no bound can be obtained from this process. An
analogous result holds for the decay r Kv and the kaon decay constant fir.

We are nevertheless able to get a certain constraint from the fact that the effective f, and fk satisfy f,/fg = 1/1.27.
Thus

(H„d, H„d, , )&xI dy—u I0&p, (H„,, —H„, , )&K Isy u I0&pk
1.27, 1+i ' '

x 1+i
242m J'zcos8c 242m J'xsin8c

and the pseudoscalar current matrix elements can be evaluated from partial conservation of axial-vector current:

I &x I dy u
I

0& I
=J2f~, /(m„+md),

and analogously for the kaon matrix element. Since we expect f,=fx, under more specific assumptions about the sca-
lar sector Eqs. (11) and (12) can provide an approximate constraint on the coupling H,„,and Hd„,. This we explore
in the context of the three-doublet model.

8 decays. —In the standard model we have

(i2)

1(8 evx) =(GFmb/192m )(c« I vb, I +c„,I vb„I l,

and, from (6),
IH, , I

(2.s.
Let us now study the scalar-exchange contribution to the hadronic r-decay modes. The rate for r z v is mea-

sured with good accuracy. The full amplitude reads

" lf k"cos8cv. y, (I —ys)ran*+i
' (Y.d Yud)&~ I

dy'u
I o&v.(i+ ys)H, (9)

v 2 2J2GFMb
where k is the pion four-momentum, f, and p, are its decay constant and wave function, respectively, and 8c is the
Cabibbo angle. One gets

GF'f.'cos'8c, m.' (H„d, , H„~„)&m—
I
dy'u

I 0&y.
I r~nv = m, 1 — '2 1+i 10

16m m, 242m J' cos8c

I (8 evx) =
s c„I vb, I [I+R],

192m
(i4)

where

R =C., I Vb. I '/C„
I Vb, I

', (is)

where the numerical factors C„and C„, contain phase-
space effects and QCD corrections for the transitions
b ~ cev and b uev, respectively. Equation (13),
rewritten in the form

is used to determine I Vb, I given the experimental data
for B(B evX), the 8-meson lifetime, the ratio R
(from the momentum spectrum of leptons), and the
"theoretical" value of C„, C„=0.4 (with S% error).
Since we focus on scalar couplings proportional to the
lepton mass the result (13) does not change even with

the scalar exchange present. Let us now consider the
channel b c~v (and similarly b~ ccs but, as we shall
see in the next section, in multidoublet models the scalar
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contribution to the latter is strongly suppressed):

I (8 xrv) = (GFmb/192m') [c„I vb, I
'+ C., I vb. I

'+&.
I vb. I

'].
where

(i8)

I

cer- Multidoublet models A.s—is well known, in such
mass models the flavor-changing neutral currents are "natu-

fair rally" (irrespectively of the values of the Yukawa cou-
nch- plings) eliminated at the tree level if only one scalar dou-
oom blet couples to the up quarks and one other scalar is cou-
and pled to the down quarks. ' In addition, for Yt mt/v,
(ex- only one scalar must couple to leptons (one of the two or

one other).
(19) In the mass-eigenstate basis the charged-scalar cou-

plings to fermions read

~,= —,', (!Hp, , ! '+Hp, ! ')c„/!v„ I
', c„=—o.o6.

(In the first approximation we neglect the interference between V —A and scalar amplitudes. This is justified a pos-
teriori by the value of the upper bound on 5 as compared to C„.)

To our knowledge there is no experimental upper limit for 8(8~Xrv) but we can place a limit on 6 from its corre-
sponding reflection on the total width and on the predicted 8(8 evX). The total width is

r(8- X)-(6,'mbs/192&') [c, I v„ I
'+c„

I v,„ I
'+(~,+~,) I vb, I

'l,
where d„describes the scalar contribution to b cps.
The coefficients C, and C„are subject to various un
tainties mainly due to the choice of the quark
values and to the strong interaction effects. A
choice C, 2.75 together with the experimental bra
ing ratio 8(8 evX) =(12.3+'0.9)% leaves some r
for scalar contribution. Using Eqs. (13) and (18)
C„=0.4, and setting R C„, I Vb. I

'/C„
I vbc I

'=O
perimentally R & 0.03), we get

Z, +a, &0.7-0.8.

Ly+ 2 GF U MUKQ; Y;@t+Pt. KMpg;—Xi@t+Ptt
W

where K is the Kobayashi-Maskawa matrix and MU,
Mp, and Mt, are mass matrices for the up and down
quarks and the leptons, respectively. The explicit expres-
sions for the constants X; and Y; in terms of the vacuum
expectation values are well known in the two- and three-
doublet models. " In the two-doublet model X=1/Y. In
the three-doublet model there is no such constraint and
both couplings may approach the perturbativity limit

23t46't
I Y; I m, -2 t"GF'/ IX; Imb =O((4tt) 't )

(2i)
These limits are consistent with the constraints derived
from the renormalization-group approach, Eq. (18) in

Bagger, Dimopoulos, and Masso, ' which give I Y; I
&5,

Ix, I
&so.

We have assumed leptons and down quarks to get
masses from the same scalar doublet since, as we shall

see, in both two- and three-doublet models this gives the
strongest coupling of leptons to scalars.

In several previous papers the limits on Y s have been
derived from the K -K and 8 -8 mixing ' and from
the CP nonconservation in the kaon system. ' Roughly
speaking, for light scalars (M&=20-100 GeV), those
limits coincide with the perturbativity limit (21) [one
gets I YI &2(M /Im, )'t ]. As long as X; & Yi the
effective scalar couplings are then some orders of magni-
tude below the experimental limits (3), (8), and (19),
even for M&=20 GeV. At the tree level, only t decays
are sensitive to the Y coupling. However, it is perfectly
possible that X;» Y; (e.g., both Yukawa couplings are
equally important for the third generation), and then X;
couplings dominate in all but t decay sectors. The fol-
lowing discussion, including Eq. (24) and (25) holds for

D —vMLPtt LQ; Xt@;++H.c., (2o)

B~30%, (26)

to be compared to the standard-model result =2.5%.

! both two- and three-doublet models.
Neglecting in the first approximation all but the light-

est Higgs-boson-exchange contribution to the effective
coupling we get from (20)

H,„,/Hd„, tan8cm, /md = (m, /md) ' . (22)

Equation (11) can now be used to place limits on H 's if
we make a plausible assumption that 1 & 1.27f,/f»
& 1.27. One gets

(23)
When expressed in terms of X the limits (8) and (23)
are similar and give

IX I &2[M/(1 GeV)], (24)

whereas the limit (3) is somewhat weaker.
It turns out that the strongest limit for X is provided

by 8 decays, Eq. (19). We get

IXI &0.9[Mb/(I GeV)]. (2s)

The difference between the bounds (25) and (24) is im-
portant since cross sections are proportional to X . For
instance the bound (25) makes the scalar contribution to
r~ pvv smaller than 0.4%. On the other hand, if (24)
were saturated the B rvX decay would saturate the
total 8 width, in contradiction to experimental evidence
for 8 eve and B @vs and simple quark counting.
Since Eq. (25) is the strongest limit presently available
we can use Eqs. (6), (18), and (19) to estimate the
upper limit for B(B~ ivX):
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8(T~ rvX) (70% (28)

and also the top-hadron lifetime about 2 times shorter
than in the standard model. The branching ratios for the
semileptonic decays into electrons and muons would be
correspondingly smaller than in the standard model. If
M& & m& the top-quark total decay width is within very
good approximation given by i bp and the branching
ratios for other decay modes are very small.

Given the bound (25) we can estimate the contribu-
tion of scalar exchange to channels strongly suppressed
in the standard model, like, e.g., the G = —1, P +1 de-

cay mode r~ veri. This is of interest in the context of
the "missing mode" puzzle in r decays. ' The order-of-
magnitude estimate is given by the inclusive rate

pv qqv. We get 0.003% as the upper limit for
vdu and 0.06% for r vsu.

Finally, let us comment on the K -K, 8 -8, and
D Dmixing-. It is not difficult to see that the first two
mainly constrain the Y couplings and the last one is sen-
sitive to the X couplings. ' Our calculation with both
terms present [Lagrangean (20)] shows that the K -K
and 8 -8 mixing is consistent with the derived bounds.
In addition with the charged-scalar exchange included
there is no longer a lower limit on the top-quark mass
from the 8 -8 mixing. ' For D -D mixing we get
AmD = 10 ' GeV [for Me 50 GeV and using (25)].

Conclusions Strong. —ly coupled scalars, with cou-
plings —1 for the third generation, have several theoreti-
cally attractive features, as advocated for instance in

Ref. 3. The bounds on the Yukawa couplings derived in

this paper from r and 8 decays are consistent with

strong couplings. (The specific set of parameters pro-
posed in Ref. 3 in a model for the CP violation seems,
however, to be ruled out by our bounds. ) If the mass of
the lightest scalar is in the range 20 GeV (Me(100
GeV those bounds are saturated by such strong cou-
plings. Thus, strongly coupled scalars in that mass
range, if they exist, should be soon observed directly and
indirectly.

The branching ratios for 8~ 7:vX and (if Me& m, )
for T rvX are most promising and most restrictive for
potential scalar exchange. With the present limits sa-
turated they may be as large as 30% and 70%, respec-
tively. For M& )m, the top-quark decay signature
would then be t r+ jet and for m, )M& the decay

b4P+ s+jet could be the dominant one. In both
cases the top-quark signature in pp collisions could po-

For the top-quark decay i

b'av

we have

2 2 2
' '2

r(r-h~v) =, 1+ ' (YX)'+ X'GFm, (mm ) z mb

4 mr

Taking the upper limit (X/M&) =0.7 GeV, Y= 2

x (ms/m, )X [for M& =m, this agrees with i Y i(2(Me/m, ) ' ], and rn, = 50 GeV, we get the bound (if
Me& mrs

1

M4,
(27)

tentially be the final state z+2 jets (the second jet is ex-
pected from 8'~ ib decay) and it could have been
missed so far, even if light.

A large contribution of 8 rvX with the subsequent
decay r~ evv would reveal itself in the shape of the
momentum spectrum of electrons in 8 eX. Such an
analysis is perhaps possible even with the presently avail-
able data.
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