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Accretion onto a Moving Black Hole: An Exact Solution
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We present an analytic solution for the steady-state, subsonic accretion of a gaseous medium onto a
Schwarzschild or Kerr black hole. The black hole moves at a constant velocity through the medium,
which is uniform and at rest far from the hole and obeys a P =p adiabatic equation of state. In the case
of a rotating Kerr black hole, the flow is fully three dimensional, but the accretion rate does not depend
on the orientation of the hole’s spin with respect to the incident direction of the flow.

PACS numbers: 97.60.Lf, 04.20.Jb, 47.75.+f, 95.30.Sf

Accretion of gas onto astronomical objects is an im-
portant phenomenon of long-standing interest to astro-
physicists. There are many environments where such ac-
cretion provides the underlying source of energy for the
emitted radiation. Examples include accretion onto com-
pact objects in binary star systems, accretion onto com-
pact objects moving through the interstellar medium,
and accretion onto supermassive black holes in the cores
of active galactic nuclei and quasars.!

Consider a black hole moving at constant velocity
through a gaseous, adiabatic medium at rest and with
uniform density at infinity. Determining the steady-state
flow poses a classic problem in accretion theory. The
Newtonian version of this problem— accretion onto a
Newtonian point mass moving nonrelativistically through
a nonrelativistic gas— was first discussed by Bondi and
Hoyle,? but only in qualitative terms. Only in the limit
of spherical accretion, appropriate for a stationary black
hole, have exact solutions been found (see Bondi® for the
Newtonian solution or Ref. 1 and Michel for the solu-
tion in general relativity).

In general, numerical approaches are required to han-
dle nonspherical accretion for either Newtonian or rela-
tivistic flow. However, we have found one exact, fully
relativistic, nonspherical solution which may provide
valuable physical insight into the more general cases and
serve as a benchmark for the testing of numerical codes.
Our solution is for a black hole moving through a medi-
um obeying a stiff P =p equation of state. The black
hole may be either Schwarzschild or Kerr type. As the
sound speed is equal to the speed of light, the flow is
everywhere subsonic and the solution has no Newtonian
analog. Amazingly, our analysis permits the angle be-
tween the angular momentum vector of the black hole
and direction of the incident flow to be arbitrary. Conse-
quently, the solution can serve as a unique diagnostic not
only of spherical and axisymmetric, but also of fully
three-dimensional, hydrodynamic codes in general rela-
tivity.

Just as in Newtonian fluid mechanics, the velocity of a
relativistic perfect fluid can be expressed as the gradient
of a potential if the vorticity is zero.® The relativistic

vorticity tensor is defined as
0y =PiPE[(hu,).s— (hug)..], (1

where u* is the four-velocity, h=(p+ P)/n is the enthal-
py, and P;=§8,+u,u" is the projection tensor. If the
fluid is perfect, Euler’s equations become

(hu,).qu®+h., =O0. )

Equations (1) and (2) yield a simple expression for the
vorticity>:
0u=[(hu,), — (hu,).,]. (3)

v

Thus if the vorticity is zero, then the quantity hu, can be
expressed as the gradient of a potential:

hu# =V 4)
As in Newtonian flow, if the vorticity is zero on some ini-
tial hypersurface, it will be zero everywhere.
The equation of continuity for the particle (e.g.,
baryon) density 7 is (nu®)., =0 or

[(n/h)y].. =0. (5)

The equation of state relates n to 4, and 4 is found from
the normalization equation h =(—y %y ,) /2, which fol-
lows from Eq. (4).

Thus Eq. (5) is, in general, a nonlinear equation in y
and its derivatives. However, if & is proportional to n, it
becomes a linear equation®—the equation for a massless
scalar field. This simplification occurs if P =pccn2,
which implies that the speed of sound is equal to the
speed of light and that the adiabatic index is equal to 2.
The flow velocity must everywhere be subsonic and,
hence, no shock waves arise. We thus have to solve the
equation

v, =0 (6)
with appropriate boundary conditions.

We analyze the flow in the black-hole rest frame and
assume a homogeneous fluid moving at constant velocity
at large distances. We seek a stationary solution. Con-
stant velocity and homogeneity upstream imply zero vor-
ticity everywhere, so that the problem reduces to solving
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Eq. (6). An important result that we hope to derive is the boundary two-surface S to be a sphere centered on
the particle accretion rate, the black hole.

Since the medium is homogeneous at large distances,
\ =—fsnu‘g/—gdsi=—f v, 8"V —gda. @) we can set n=h =1 there and restore n. later. The
$ asymptotic boundary condition in rectangular coordi-

Here we have set n=h in appropriate units, and taken | nates is y =u,x* = —u%t+uw-x or, in spherical coordi-
nates,
v =—u%t+uwrlcosdcosy+sindsinfycos(p — gg)] (r— o). (8)

We allow the asymptotic three-velocity vector ve to point along an arbitrary direction (8,68y). Note that

ul;o=(u9c,uvao)=(l—Uozo)_l/z(l,VOo). (9)

Our other boundary conditions are that n and 4 be finite everywhere, including at the event horizon of a black hole,
and that the flow be into, and not out from, a black hole.

Now consider flow onto a Schwarzschild black hole, for which Eq. (6) becomes

-1
w =1L 0 || _2M | 8y | 1 1 8 |, 8y 1 0% |_|,_2M| % _
A [1 - ]r ¥ + e [sin() 39 1535 + Sin%6 902 == > 0. (10)

For stationary flow the gradient of y must be indepen-
dent of time, and so the solution of Eq. (10) can be writ-

where A, and By, are constants to be determined from

ten as the boundary conditions. The velocities follow from Eq.
(4):
y=—ult+3 m AmRi(r)Yin(6,0), (1) .
= T Uco, 14
where the radial part satisfies i " (142)
1 1 !
dei [ [1 _2M ,2d_:ri D pco ) ity =25 S AimPi () + BimQi(€)]Yim(6,0),  (14b)
r r r ’

The general solution of Eq. (12) can be written as a su- 0Y1,(6,0)

=3 (AP () + By ,
perposition of Legendre functions, R; =AP;(&) +BQ; (&) e 1,2,:"[ mP1(E)+Bim Q1 (£)] 96 (14c)
where £=r/M — 1. Thus the general solution for y for a Y (0.0)

i i Ym 0,
Schwarzschild black hole is ity =3 A PL(E) + By 01 ()] 21 22 2l (14d)
v =—ult+ X1 A P1(E) + Bin Q1(E)1 Y1 (6,0), b ’
(13) | with the normalization condition yielding
nt=01=2M/r) " Wnu,)?— 0 =2M/r) () 2= r ~2(nug) 2 —r ~2csc?0(nu,) (15)

Our first important constraint is the finiteness of n at the horizon, r =2M. Equation (15) appears divergent at the
horizon, but this is a divergence that can be eliminated if one of the spatial velocities is appropriately divergent there.
Using the limiting behavior of the Legendre functions near the horizon, £ =1, we find that

=1
2, [1— ZM]
r

2
wl)2— [iIZB/,,,Y,m(B,q))] } (16)

near the horizon, which implies that | BgoY oo =4Mu%, with all the other B’s zero. Since we are interested in inward ac-
cretion, we select the positive sign for Bgo. Equation (13) reduces to

y=—ult —2MulIn(1 =2M/r)+ X m AimP1(&) Y} (6,0), a7

where the A}, must now be found from the asymptotic boundary conditions in Eq. (8). Without loss of generality, we

can specialize to 6y =0, flow toward the north pole of the coordinate system. All the A’s vanish except A9, and we
have, as our final solution,

yv=—ulr—2Mul1n(1 —2M/r) + uw(r — M)coso (18)
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with velocities

nu,=—ul, (19a)
nu, =—4M*u%/lr(r —2M)1+u - cosé, (19b)
nug= —u(r —M)siné, (19¢)
nuy =0, (19d)

and density in units of 7
n2=w) 21 +2M/r+QM/r)*+ CM/r)3] — (ue) 1 —2M/r + (M/r) *sin?01 + 8 (M/r) 2u u  cosé. (20)

As can be seen from the above equation, n is clearly finite at the horizon. This solution agrees with the solution given
in Ref. 1 for spherical accretion with y =2 and @ =1 in the limit of v. =0. The stagnation point, where the velocity is
zero, lies at =0 (directly downstream) and at radius

r=MI1++4/v.) "] (1)
The accretion rate is, from Eq. (7),
N=16xM*noul. (22)

This result is essentially the spherical value multiplied by a Lorentz y factor for the flow at large distances.

We display a plot of the velocity field for an illustrative case (ve=0.6) in Fig. 1.

Now turn to a Kerr black hole. Use the standard form of the metric in Boyer-Lindquist coordinates’ to write Eq. (6)
as

Y
y+—

9 . 2, 0
_+ _—_
asin“@ o

1) at

2
2+ 2 i+ _a_ + 1
(r+a )at aaq) v %

Ai‘fi] 419 [sin()—a—ﬂ] =0, (23)

1
A or sin@ 06 96

where A=r?—2Mr+a?. The separation of variables in Eq. (11) still works, but with the radial function depending on
m as well:

(d/dr)(AdR/dr)+[—1(+1)+m2a?/AIR =0. (24)

If we set r=M+EV/M?—a?, we see that Eq. (24) is Legendre’s equation with an imaginary second index. Define
a=a(M?—a?) ~'2. Then the general solution for y is

y=—ult+ 2 [A4P/ (&) +BiQ1(E)]Y10(8,0) + X 1[4 PI™(E) + Ajn P ™ (E)1Y1 (6,0), (25)

where the ' in the second sum denotes omission of m =0.

The associated Legendre function can be written in terms of a hypergeometric function as®

PIme(§) we™F (= 1,1+ ;1 —ima;(1 = £)/2), oo
where
2=4alnlE+1)/E=D]=faM?=a?) "l —r-)/(r=r)] @D

Here r + =M = (M?—a?)'/? are the locations of the event horizons, solutions of A=0. Since / is an integer, the hyper-
geometric function in Eq. (26) is a polynomial in £ of order /.
The normalization equation for n gives

n2=(A) "2+ aDud —alnuy)1? — (Zsin20) ~'[(nu,) —asin?0(u )12 = (A/2) (nu,)* =2 ™' (nue) ?, (28)

where Z=r2+a?2sin26. As for the Schwarzschild black hole, we require # to be finite at the event horizon. We find, in
the limit r—r 4+,

nl— —ZIK { [(r2+ +a2)ul —aY im(Afe™+ A Zime ") Y1 (6,0) ] g
I,m
- [_ M?—a?) ‘/2ZBzY/o(9,¢) +azl( — Ahe™ + Ame I imYm (6,¢) ] 2}- (29)
1 I.m
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Since we want a solution with inflow, we set the sign of By to be positive. We find that all the other B,’s vanish, and

also all the 4,%’s, so that irregular terms can exactly cancel in Eq. (29). Equation (25) for y reduces to
(r3+a®ul

0
=—uct+ n

v 2M2=a®)'? T r—rs
We now find the remaining coefficients by matching to the asymptotic value given in Eq. (8). No assumption is made
concerning the direction of the flow relative to the hole’s rotation axis (the polar axis). Only the /=1 terms are

r—r-

+ X A F(—= 1,1+ 1;1+ima;(1 —E)/2) Y1 (8,0 — X). (30)
I.m

nonzero, yielding

r3i+a®ul  r—r-
n

20M2—a®)'? T r—ry

The velocity components are thus

u/=—u9°t+

0

+ U o(r—M)cos6cosfp+ uwRel(r —M+ia)sinBsinBoei(”—"“‘Z)]. 31

nu=—ud, (32a)
nu,=—(ri+a?)ul/A+uwcosdcoslp+ uwRefll +ia(r —M+ia )/A]sinBsinBoei(a_°°_1)}, (32b)
nup= —te(r — M)sinBcosBo+ uw Rel(r — M +ia)cosBsinboe’ "% ], (32¢)
nuy= =t Iml(r — M +ia)sinBsinfe’ 1. (32d)

FIG. 1. Plot of the three-velocity field v'/u® for flow with
vew=0.6 (1=0.75) past a Schwarzschild black hole. The
streamlines are labeled by arrows while the velocity contours
are labeled by values of v (in units of ¢). The inner circle is the
event horizon with radius r =2M; the outer grid is at radius
r=7M. The cross marks the stagnation point downwind of the
hole.
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The value of n can be found from the normalization
equation (28).
The matter flux, from Eq. (7), is

N=4r(r}i+a*)n.u (33)

for all flow directions at infinity. This is just n. times
the area of the black hole times the Lorentz y factor for
the asymptotic flow.
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