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Finite-Temperature Phase Transitions in Lattice QCD for a General Number of Flavors
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Finite-temperature transitions in lattice QCD are studied for various numbers of flavors in the range
1 ~ Nf ~ 18 on an 8 &4 lattice by the Langevin simulation technique. It is found that the weakening of
the transition at intermediate quark mass is a general feature for Nf 2, but that the smoothing out of
the transition observed for NI 2-4 does not occur for large numbers of flavors (NI~ 10). For NI=1
the transition weakens toward small quark mass mq but remains first order down to mqa =0.05.

PACS numbers: 12.38,Gc

While the basic feature of QCD is determined by the
dynamics of the gauge field, ' there are some cases where
the reaction of quarks on the gauge field is expected to
modify the qualitative behavior of the theory. The best
studied example is the effect of quarks on the phase
structure of QCD at finite temperature. It has been
recognized that the first-order deconfining phase transi-
tion becomes weaker when dynamical quarks couple to
the system and it may even disappear as quark mass m~
decreases. On the other hand, for zero quark mass, the
presence of quarks should trigger a transition in associa-
tion with the recovery of the chiral symmetry at high
temperatures. Numerical simulation reconciles these ap-
parently contradictory statements in the way that the
first-order phase transition, which disappears once as mq
decreases, will be recovered for a smaller quark mass.
Such a behavior has indeed been established for Ny 4,
and evidence has been reported for NJ=3 and 2.
The dependence on the flavor number in general, howev-

er, remains an interesting issue with this phase transition
for several reasons. An effective-o-model approach with
the aid of the 4 —t. expansion predicts that the chiral
phase transition should be first order for Wf ~ 3, while
for Wf =2 it does not say definitely whether it should be
first or second order, but the latter is preferred. The
model predicts for NJ =1 the absence of the chiral tran-
sition, for the determinant term in the Lagrangean ex-
plicitly breaks the chiral symmetry and hence washes out
the phase transition which otherwise appears as second
order. It is also of considerable interest to ask what is
the behavior for large Nf, ' where we expect an in-

creasingly strong chiral perturbation from quarks but
their effect at the same time weakens the deconfining
phase transition. If we continue to increase Nf, the
confinement will eventually be lost and a phase transition

at zero temperature which separates the weak-coupling
unconfined phase from the strong-coupling confining
phase should appear.

In this Letter we report an initial analysis for the
phase transition for a general number of flavors. We
used the Langevin method, "' and the number of
flavors is effectively controlled by the strength of the bi-
linear noise term NI 8(g InD—() with D the Kogut-
Susskind Dirac operator. The method of simulation is
essentially the same as reported in Ref. 6. We made typ-
ically (2-5) X10 iterations with the Langevin time step
h, z=0.01 at each parameter set on an 8 x4 lattice, ex-
tending them to (10-30)X10 iterations where neces-
sary. Some runs were also made on an 8 lattice.

NI=I.—The simulation is made for mrna =0.4, 0.2,
0.1, and 0.05. The average of Polyakov line (ReQ), as
presented in Fig. 1(a) (50 ~ r ~ 100), shows a jump at
a certain value of p for each mq, and this characteristic
does not change from one mv to another down to
m&a=0. 05. The magnitude of the jump h(ReQ) for
m~a~0. 2 is comparable to that of the pure gauge sys-
tem and decreases for smaller mv (see Fig. 2). A similar
abrupt jump is also observed in the chiral order parame-
ter (XX), with the magnitude of the jump more pro-
nounced as mq decreases. The behavior of the transition
quite resembles the case with mqa =0.1 for NI=2 [see
Fig. 1(b)] for which we have confirmed the first-order
transition.

To verify the first-order nature for the present case, we
extended our runs in the transition region for mqa =0.2,
0.1, and 0.05 for which the transition may be weakening

up to z=200-300 and also made several new runs of
similar length in steps of Bp=0.01. At mrna =0.2, the
extended runs were quite stable with the average values
of observables not changing from those of the short runs.
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FIG. 2. The magnitude of the jump of the Polyakov line
h(ReQ) across the transition as a function of rnva for various
numbers of flavors Nf.
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On the other hand, for mva -0.1 flip-flop behaviors with
a period of x=100 were observed at p 5.50, 5.51, and
5.52. For these runs the average of ReQ over subinter-
vals of z =50 form two clearly separate clusters center-
ing around (ReQ) =0.09-0.10 and 0.04-0.05. Similar
flip-flop behaviors with a somewhat more irregular pat-
tern were seen for m~a =0.05 at P =5.47 and 5.48.

The stable behavior at m~a =0.2 shows that the tran-
sition there is a relatively strong first-order transition.
The appearance of flip-flops and the decrease of the
amount of jump h(ReQ) across the transition at mva
=0.1 indicate that the transition weakens towards mva
=0.1. The transition, however, is still first order at mqa
=0.05, as evidenced by the persistence of the flip-flop
behavior. The transition might be weakening from

FIG. 1. The average value (ReQ) for an 83&4 lattice as a
function of p for (a) 1VI 1, (b) Nf 2, and (c) Nf 10. The
open squares in (c) are the results of a detailed heating run be-
tween P-5.1 and 5.2.

mrna 0.1 to 0.05, but it is not clear from our data
whether it eventually disappears toward mv 0 reconcil-
ing with the original prediction of the o-model analysis, s

or remains first order. '

Our results show that the first-order phase transition
persists at least down to mrna 0.05 with possible indica-
tions of weakening with decreasing mv. This is rather
different from the Nf 2 case, where the transition be-
comes continuous for an intermediately light quark mass
before turning first order again for rnva~0. 1. For
Nf 1, the Z(3) breaking effect of dynamical quarks is

probably too weak to smooth out the first-order transi-
tion of the pure gauge system.

Nf 2.—For m a 0.2, 0.1, and 0.05, the results have
been reported previously. The transition shows first-
order nature for mva 0.05 and 0.1, and that for mrna
=0.2 is of continuous transition. In the present analysis,
the simulation has been extended to mrna 0.4 and 1.0.
At mqa 0.4 the average value of Q shows a continuous
increase with P, while it exhibits an abrupt jump at

mrna 1.0 [see Fig. 1(b)]. The continuous increase at

mrna 0.4 is similar to that at mva 0.2, but it appears
to occur over a narrower interval. Thus the first-order
deconfining transition, which persists at rnva 1.0, is
smoothed out before mrna 0.4 and the dynamical quark
continues to make the transition smoother at least down
to rnva 0.2. From rnva =0.1 to 0.05, b,(ReQ) increases
as shown in Fig. 2, indicating that the transition becomes
stronger towards ms 0 by the effect of the chiral phase
transition.

Wf =10.—%e made thermal-cycle analyses with z
=20 at mrna 0.1, 0.2, 0.4, 0.6, and 1.0 taking averages
over the last r-10. As shown in Fig. 1(c), we have
detected a clear hysteresis at mrna 0.1 and 1.0 which in-

dicates first-order transitions at both the chiral and
heavy-quark regions. The lack of hysteresis at other
values of mv shows that here again the transition is
weakened at intermediate values of mv. The increase of
(Q) across the transition region, nonetheless, is very
sharp at those values of rnqa. This feature and the fact
that h(ReQ) continuously increases for smaller mv (see
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TABLE I. Critical value p, for 83x4 lattice.

0.05 0.1 0.2 0.3 0.4 0.5 0.6 1.0

1

2
4

10
12
18

5.475(5) 5.51(1) 5.57(1)
5.34(1) 5.375 (5) 5.45 (3)

5.10(10) 5.25(5) 5.35(5)
4.70(10) 4.85 (5)
4.S0(io)
4.25 (15)

5.63(1)
5.54(2)

s.is(i)

5.63(1)
s.so(io) s.6s(is)

5.35(5) 5.60(10)

Fig. 2) suggest persistence of a first-order transition.
This is strongly supported by the additional runs made at
mqa 0.4 with a finer step in P (bP 0.02) which exhib-
ited quite an abrupt jump between P 5.14 and 5.16 [see
the open squares in Fig. 1(c)]; the sweep-to-sweep fluc-
tuation was found to be much smaller (typically —,'0 )
than the jump. These results show that the transition
remains first order for the entire range of the quark mass
because of the strong chiral phase transition. The
smoothing of the first-order transition at intermediate
quark mass, which is typical of the cases Nf 2-4, is un-

likely to occur at Nf 10.
Another interesting point with the phase transition at

Nf =10 is whether it represents that for finite tempera-
ture or that for zero temperature, since the two-loop
term of the renormalization-group P function changes
sign at Nf 8.05 which may cause a first-order phase
transition. In the latter case the critical point P, should
not move when the temporal size of the lattice is

changed, while it should for the finite-temperature tran-
sition. We made a thermal-cycle run on an 8 lattice at

mrna =O. l, and found that P, =4.9+ 0.1 showing an in-

crease of BP=0.2 compared with the critical value

P, =4.7~0.1 for an 83&4 lattice. This increase is con-
sistent with what is expected from the P function for the
finite-temperature phase transition for Nf 10 (i.e.,
hP 131n2/4z + =0.22 and the effect of scaling
violation will decrease this value slightly).

Nf =12.—The simulation is made with mrna 0.1 on
an 83x4 and an 8 lattice. The qualitative features for
an 8 x4 lattice are quite similar to those for Nf 10.
We also detected an increase of the critical coupling
AP=0. 2 when we moved from 8 x4 (P, 4.5+ 0.1) to
8 (P, =4.7~0.1), and we conclude that the first-order
transition we detected is of finite-temperature type.

Nf =18.—This number already exceeds the critical
value Nf = '&' for quark confinement in the continuum
theory. The behavior of the system we found at mqa
=0.1, however, does not differ much from the cases for
Nf =10 and 12. This is not surprising, because the lat-
tice theory is always confining in the strong-coupling re-
gion where we expect a deconfining phase transition at
finite temperature. We identify the phase transition of
the present analysis with this type. The two-state signal

was confirmed at P 4.2-4.3. There must be another
type of phase transition at zero temperature separating
the weak-coupling phase from the strong-coupling phase.
To detect this, we have to use a much larger lattice and
larger P.

It is conceptually well understood that dynamical
quarks weaken the deconfining phase transition as they
work as a source violating the center Z(3) symmetry.
We may expect that such an effect is stronger for larger
Nf, namely, we anticipate the smoothing at a larger mq..
The perturbative analysis in I/mv predicts that it hap-
pens at mrna-exp[(1/N, )lnNf] with N, the temporal
lattice size. This expected smoothing, however, did not
occur in our simulation. For Nf =10 we rather found in-
dications that the transition remains first order for all
values of mv. This should be ascribed to the strong
chiral transition which takes over before the deconfining
transition is smoothed out with decreasing mq.

The role of the chiral phase transition is indeed ap-
parent in the following places: (i) the increase of
A&Red) for Nf &10 towards smaller mv as compared
with the pure gauge system; (ii) larger value of A(ReQ)
with increasing Nf, (iii) stronger transition for inter-
mediate quark mass at Nf) 10; (iv) the recovery of
first-order phase transition and the increase of d,(ReQ)
for smaller mq for 4 & Nf ~ 2.

On the other hand, the role of the chiral transition is
not conspicuous for Nf 1. While the transition remains
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FIG. 3. The critical value P, as a function of mva for vari-

ous numbers of flavors on an 8 x4 lattice. Solid bars, discon-
tinuous transitions; open bars, transitions that appear continu-
ous. The data for Ny 4 are taken from Ref. 3.

180



VOLUME 60, NUMBER 3 PHYSICAL REVIEW LETTERS 18 JANUARY 1988

first order down to mqa =0.05, an increase of its strength
as observed for Nf ~ 2 close to the chiral limit is not
seen in this case. This might be a reflection of the ab-
sence of chiral transition, as predicted by the original o-
model analysis.

Our results are summarized in Fig. 3 and Table I,
where the critical coupling P, is shown versus mq for
various Nf for an 8 x4 lattice. Open bars in the figure
show the region of transition for which the change of
physical quantities appears continuous. As already no-

ticed in earlier publications, the smoothing of the tran-
sition due to dynamical quarks is visible for Nf =2-4.
Such a smoothing at intermediate range of the quark
mass is not seen for Nf =1 nor for large Nf ( 10). Our
observations thus lead us to conclude that the smoothing
of the first-order transition is a phenomenon visible only
in a limited range of number of flavors in general QCD
dynamics.

The numerical calculation was carried out on HITAC
S810/10 at KEK. We would like to thank the Theory
Division of KEK for its warm hospitality.
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