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Steady-State Segregation in Diffusion-Limited Reactions
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The conditions for a macroscopic segregation of A and 8 in a steady-state 8+8 0 reaction are
studied via a finite continuum model. Segregation occurs in d 1, is marginal for d =2 (critical dimen-
sion), and is absent for d 3. Results for infinite systems are also mentioned.
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The nonclassical kinetics of diff'usion-limited reactions
are of much current interest. ' The reaction A +A

products is of relevance to exciton annihilation in

molecular crystals, polymers, ' and photosynthetic an-
tennas. " Its nonclassical behavior for few-dimensional
(d & 2) and fractal systems has been widely document-
ed. ' 'o The reaction A+8 products is of interest in

chemical kinetics and in solid-state reactions: electron-
hole, soliton-antisoliton, and defect-antidefect recom-
binations. It is also of potential interest to charge
recombination in clouds and to matter-antimatter an-
nihilation in the universe. s

Zeldovich and co-workers' have demonstrated how the
density fluctuations during an 2+8 reaction lead to
long-time anomalous kinetics and to reactant segrega-
tion. This effect has been demonstrated in simulations

by Toussaint and Wilczek3 and others. 6 The upper
critical dimension for this behavior is d =4. '3 We em-
phasize that the above discussed reactions are of the
"big-bang" type (also called "batch, " "transient, " or
"pulsed" ), that is, particle creation occurs only at the
origin of time. The initial, relatively small, density fluc-
tuations translate into relatively large long-time density
fluctuations, even though they are quite small in absolute
terms.

Another fluctuation-segregation effect has been
demonstrated very recently for steady state 3+8 re-ac-

tions occurring over a wide density range. Here the
simulations start from zero density, but a steady rate of
particle creation leads to segregated, high-density, steady
states. Timewise, there is no fluctuation in the global
densities (pA

—pg =0). However, spacewise, the steady-
state realizations are drastically segregated, i.e., there
are large regions where pA

—
pit = pA and others where

pA
—

ptt = —pit. It is noteworthy that the upper critical
dimension for this steady-state effect appears to be '
d =2 (compared with d =4 for the Zeldovich effect). As
the Zeldovich approach sheds no light on this new effect
it has attracted much recent interest ' ' and is the sub-
ject of this paper. Our results differ from those obtained
recently with different methods.

Our reactant segregation measure' involves both the
density-difference (pA

—
pit ) correlations and the

density-sum (pA+ptt) correlations. A previous mea-
sure, employing only the difference terms, is not mean-
ingful: For there to be segregation there must be a large
relative excess of one species over the other, e.g. , pA » pit
(or pit»pA). This in turn implies that ~pA

—
pit ~ =pA

+pit. However, large-amplitude long-range correlations
in pA

—
pit are prerequisite for macroscopic segregation.

We show that segregation in finite systems does occur for
d =1, occurs marginally for d =2, and does not occur at
all for d=3.

Let pA(r, t) and pit(r, t) respectively denote the local
concentrations of species A and 8 at time t. A and 8
react and annihilate one another, 2+8 0. Both spe-
cies can diffuse with coefficient cr, and are created at ran-
dom locations and times. The equations that might de-
scribe the rate of change of the two concentrations then
are of the form

p;(r, t) =oV p;(r, t) F(pA, ptt)+r—i;(r, t),

i =A, B,

y(r, t) =oV y(r, t)+rt„(r, t), (2)

while the sum variable evolves according to the nonlinear
equation

p(r, t) =oV p(r, t) F(p+y, p
—y)+ri —(r, t). (3)

where riA (r, t ) and tltt (r, t ) are the random source terms.
F(pA, ptt) is a function symmetric in its arguments, i.e.,

F(pA, ptt) F(ptt, pA), that describes the local reaction.
A and 8 molecules are deposited at spatially random lo-
cations that change every r units of time, but the total
number of A and 8 molecules is kept equal at all times.

It is convenient to deal with the sum and differ-
ence variables y(r, t) = —,

' [pz(r, t) ptt(r, t)] a—nd p(r, t)
= —,

'
[pA(r, t)+pit(r, t)j with corresponding definitions

for ri„(r,t) and ri~(r, t). The diff'erence variable then
obeys the linear equation (unaff'ected by the reaction)
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Note that

y(r, r)d r =„q„(r,t)d r =0 (4)

at all times.
Chemical segregation might arise as a consequence of

the detailed interplay of the three counteracting mecha-
nisms implicit in (1). Diffusion tends to mix the species.
Reaction annihilates the thoroughly mixed regions, thus
favoring spatially separated regions. The sources tend to
create spatially nonuniform patches on a scale deter-
mined by the density of sources (this latter scale is, in

general, much smaller than the macroscopic scales of in-
terest for segregation). For sufficiently many dimen-
sions, one expects diffusion to dominate and the long-
time spatial distribution of species to be uniform. The
interesting question is whether there exists a critical di-
mension below which macroscopic segregation occurs.

A measure of the spatial variations in the difference
variable is the correlation function C„(r r',—t) —=I (y(r,
t)y(r', t)), where I is the volume of a unit cell in the
corresponding d-dimensional discrete problem' and the
brackets denote an average over an ensemble of the pos-
sible realizations of the random source terms q~ and rig.
To evaluate the correlation function C„ it is necessary to
specify the first and second moments of the source term

rl„. We introduce a number of parameters as follows.
One might envision A molecules (or 8 molecules) being
deposited from a "source" into a given unit cell for a
time interval of average duration r after which that
source is "turned off." During the time t, n molecules

)0
O
b

C

-5-

.5

(x-x') /L

FIG. 1. Steady-state diff'erence-variable correlation function
for d=1. Solid curve, exact results (Ref. 8); dashed curve,
first term approximation. Note that any conclusions about
segregation require additional information about the sum vari-
able.

on the average are deposited in a unit cell. At any in-
stant of time A molecules are being deposited into an
average of N unit cells. The total rate of deposition of
A's in the entire system is Nn/r and the rate of deposi-
tion of A's (or of 8's) per unit cell is R—=Nnl /L t,
where Ld is the total system volume. For the first mo-
ment (4) clearly implies (rl„(r,t))=0. For the second
moment one obtains

(rl„(r, t) t1„(r',t ')) = (Rn/I )b(r —t ') [b(r —r') L). —

The L d factor subtracted from the spatial b function in (5) is a direct consequence of the constraint (4).
Use of standard Fourier-transform techniques for linear equations leads to the result

(5)

2aL" t~o jc

where the initial densities of A and 8 have been set to zero (we assume periodic boundary conditions; the results we ob-
tain are insensitive to this choice). The k values in the sum (6) are given by k=2~m/L, where m is a vector of non-

negative integers (me0). Note that the exclusion of k =0 is a consequence of the conservation condition (4). Such a
term would have contributed a spatially homogeneous configuration whose intensity grows linearly with time.

We are interested in the behavior of the correlation function at long times. From (6) we see that a steady state is
achieved as t ~ only because the k=0 term is absent. In one dimension the t ~ sum can be evaluated exactly
with the result (see Fig. 1)

C„' ~ (x —x ') = (RnLI/24o ) [1 —(6/L )(x —x ') +6(x —x ') /L ], 0( (x —x ') (L,

where the superscript denotes d =1. The species observed at x' is dominant over a length (1 —I/J3)L while the other
species spreads over a length L/J3. This long-range correlation indicates an excess of one species over the other over a
macroscopic distance. Whether this excess is macroscopically significant depends on the relative densities, i.e., segrega-
tion is observed if either p~ &&pp or pp &&pg. Note that the maximum value of the correlation function is proportional
to L, the size of the system. Figure 1 also shows the lowest term in the sum, i.e.,

C„'1 =(RnL/4x rJ) cos[2z(x —x')/L]

In dimensions higher than d =1 the sum (6) cannot be done exactly. The d =1 case suggests that the contribution to
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the sum from the smallest
~ k~ values might be an adequate representation of the essential features of the sum when

t ~. In two dimensions with r=(x~,x2) we distinguish between those terms that have one component of k vanish
and those for which neither k~ nor k2 vanishes. The former contribute to striped configurations and the latter to
configurations that vary in both directions. We retain only the lowest contribution of each of these qualitatively distinct
types of terms:

C„"'(r—r') =, g cos (x; —x ) + —, cos (x) —x(+x2 —x2)
Rnl 2x, & 2z
4n a i=i L L

In three dimensions we similarly distinguish terms with two k components equal to zero, one k component equal to
zero, and all nonvanishing components. Again retaining only the lowest-order contribution to each of these types of
terms, we obtain

R 2C„"'(r—r') = ", g cos (x; —x ) + —,' g cos (x; —x +x) —xJ)
4Ã O'L i 1 I ij~l

J

+ 3 cos (x~ XI+x2 x2+x3 x3)

As in one dimension, the spatial patterns implicit in (g)
and (9) are also persistent over macroscopic length suits.
scales. The big difference between the one- and higher- One calculationally tractable measure of the degree of
dimensional correlation functions lie in their amplitude: macroscopic segregation is the ratio S(t)—:(y (r, t))/
Whereas C„' (0)~L, C„1 )(0) is independent of the (p (r, t)). The ratio S(t) 1 when only one chemical
volume of the system and C„1'~(0) decreases with in- species is present at any r, and S(t) 0 when the rela-
creasing system volume as V ' =L '. Note that the tive excess of one species over the other is small. To find
above results are not in themselves sufhcient to deter th-e steady-state segregation index
mine whether or not observable segregation will occur. S= lim S(t)
However, the system volume dependence of the ampli- f —t 00

tudes does suggest a greater likelihood of segregation for we must determine the L dependence of (p (r, t)). To do
decreasing dimensionality d. Also note that the sum so we must first specify a form for the reaction function
variable p(r, t) must satisfy the obvious constraint F in Eq. (1). We choose the form F(pg, pg) =Kpgpe,
(p (r, t)) ~ (y (r, t)) in all dimensions; in one dimension where K is a rate constant. The order X is positive and is
(p (r, t)) must therefore grow at least linearly with sys- usually chosen to be unity. We require that X& —,

' but
tern volume, contrary to classical chemical kinetics re- need not specify its value any further. Equation (3) then

becomes

p(r, t) =crV2p(r, r) K[p —(r, t) —y2(r, t)] + ri~(r, t).

In the steady state we thus set (p(r, t)) =0 and use (q~(r, t)) =R/l to write

0=crV'(p(r, r)) —K([p'(r, r) —y'(r, r)] )+R/l .

(10)

We replace ([p (r, r) —
y (r, r)] ) with (p (r, r) —

y (r,
t)): Although unknown errors are introduced by this
replacement, it is unlikely that the system-size depen-
dence of (p (r, t)) will be affected.

Consider then the L dependence of the terms in (11).
The source term is O(L ) and (y (r, t)) is O(L ).
Suppose that (p(r, t)) =O(L') with a to be determined,
and that correspondingly (p ) =O(L '). The diffusion
term V (p) is then O(L~) with P ~ a. Purely schemati-
cally the leading L dependences in (11) then are ex-
pressed by

0 L~ —(L 2~ L 2 —d)—x+L 0

We focus on the balance of the largest contributions, and
we do so for each dimension.

When d=1 the leading contributions are in the pa-
rentheses, i.e., we must have 2a =2 —d =1 or a = —,

' re-
gardless of the value of X & —,

' . Thus for d =1
(p (r, r))-L and consequently the segregation index
S=0(L ), i.e., S 1. Therefore, spontaneous macro-
scopic segregation occurs in one dimension.

On the other hand, when d =3 the leading terms that
must balance are L ' and L from which it follows that
a=0. Thus for d=3 we find the classical behavior
(p (r, r))-L and since (y (r, t))—1/L, the segregation
index vanishes with increasing L, i.e., S 0. Therefore,
there is no macroscopic segregation in three dimensions.

When d=2 then there are two terms O(L ) in (12)
which must be balanced by the (p ) term, i.e., we must
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again have a=0. We can write from (11) (p (r, t))
= (y (r, t))+ (R/K) '/ and both terms on the right are
O(L ). With the results obtained earlier for (y (r, t))
we thus have for the segregation index

4 2

1 + (g/I 2) (i —x)/x
nCSCi/~

C—= g (j'+rn')
j,m~0

(13)

The behavior of S is clearly dependent on detailed pa-
rameter values. If X=1 (classical case), then 5 becomes
independent of the deposition rate R. If X~1, then a

higher deposition rate favors segregation if X & 1 and in-

hibits it if X & 1. For a given n, efficient diffusion rela-

tive to reaction (al »nK'/ ) inhibits segregation while

efficient reaction relative to diffusion (nEC'/ »ol ) pro-
motes segregation. Finally, note that increasing n, the

number of A's or 8's deposited in a unit cell in the time

interval r, promotes segregation. Thus we conclude that
for the critical dimension d=2 segregation is marginal
and depends sensitively on the detailed parameter values.

In summary, we have shown for finite systems that
macroscopic segregation occurs in one dimension, occurs
marginally in two dimensions, and does not occur in

d ~ 3 dimensions. For d =2 in the simplest cases (n =1,
X= 1 ) the segregation index is completely determined by
the ratio ol /K, i.e., by the relative rates of diH'usion and

reaction. In one dimension the correlation length of a

pattern is of order L/2. In two dimensions this length

depends on the detailed parameter values. Numerical
simulations carried out on finite systems yield results

that are not only in qualitative agreement but also in

quantitative agreement with ours. '

In an infinite system (detailed elsewhere' ) analogous
(but diferent) conclusions about segregation can be
drawn: There is segregation in one and two dimensions,

and marginal segregation in three dimensions.
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