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Experimental Determination of Fractional Charge e/q for Quasiparticle Excitations
in the Fractional Quantum Hall Effect
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The Laughlin-Haldane prediction that the charge e* of quasiparticles excited across the energy gap of
fractional quantum Hall-eff'ect ground states at v=p/q is e* ~e/q, a new fundamental quantum of
nature, is found to be consistent with experiment. The experimental probe of e* is cr„'„, obtained from
the extrapolated l/T =0 intercept of the activated region of the Arrhenius plot, which is shown to be
constant for p/q fractions of the same q and scale as 1/q2 for q 3, 5, 7, and 9.

cr„', =c(e/q) '/h, (2)

PACS numbers: 72.20.My, 73.40.Lq

One of the most striking theoretical predictions of the
fractional quantum Hall effect (FQHE) observed at
Landau-level filling factors'~ v p/q is the existence of
excited-state quasiparticles of fractional charge e*. Two
different values of e have been proposed, namely
e*=~e/q, ~4 and e*=~ (p/q)e. As discussed by
Laughlin, ' the integral QHE is exact in the limit of low

temperature and large sample size because it is a mea-
surement of the electron charge, a fundamental quantum
of nature. If the FQHE is also exact in the macroscopic
limit, the implication of the theory is that e* is also a
fundamental quantum of nature. Although fractional
quantization of the Hall resistance has been measured to
be exact to 3 parts in 10,6 there is to date no experimen-
tal measurement that probes the predictions for the
quasiparticle charge.

We report a systematic study of tr„'„=cr„„(1/T=O)
for a range of GaAs-GaA1As heterojunctions and p/q
states with q =3, 5, 7, and 9 obtained from the relation

C C

(p.'.) '+p.'y (p„'„)'+ [(q/p) h/e'j '

which is valid at exactly v=nh/eB p/q. In Eq. (1),
p„'„ is defined by p„„p,'„e +kT where 6 is the energy

gap between the fractional ground state and the mobile
(nonlocalized) elementary quasiparticle excitations. It is

shown that within experimental errors, cr„'„ is constant
for p/q fractions of the same q and scales as 1/q . This
observation provides an experimental probe of e* which
confirms that e =+ e/q and raises profound questions
for the theory of localization in 2D in the presence of a
magnetic field. A summary is first given of the main re-
sults followed by a presentation of the experimental data.

In our highest quality sample G139 we find that for
the thirteen fractional states p =2,4, 5 with q =3,
p =2,3,7,8 with q =5, p =3,4,9, 10 with q =7, and p
=4,5 with q =9,

where, if we take an average of all thirteen fractions, the
numerical constant is c=0.91 with standard deviation
~0.11. The data can also be analyzed by the deter-
mination of the best fit to loga,'„vs logq which gives
o„'„(1.07/q ')e /h, consistent with Eq. (2) within er-
ror bars of the logarithmic plot. The validity of Eq. (2)
in other samples is verified for q=3 by our a„'„results
for fractions —,', —', ,

—', , and —', in four different high-

quality heterojunctions, where for nine of some sixteen
activation studies o„', =(0.82~0.12)(e/3) /h. Experi-
mental errors in this preliminary work were greater than
the G139 data, for which the measurement procedure
has been optimized. In the FQHE regime, p,„ is propor-
tional to tr„of the quasiparticles, which has the units
(e*)2/h. Consequently our observation of a constant
value of cr,'„ for fractions of the same q that scales as
1/q is entirely consistent with the prediction that
e =+'e/q. This also agrees with the proposed FQHE
tr,„vs o„y scaling diagram and our scaling data, ' for
which the high-temperature limit of a„„ is progressively
lower for "flow" to p/q states of increasing q and fixed

points which determine this flow scale as (e*) 1 where I
is a dimensionless disorder parameter. For a given q, Eq.
(2) is valid for fractional states in which p varies by up
to an order of magnitude and hence a relation e
= ~ (p/q)e is incompatible with our data.

The numerical constants 0.91 and 1.07 in Eq. (2) and
the logo„'„vs logq best fit are close to unity and the pro-
voking identity o„'„=1.0(e/q) /h provides a better fit to
the q =3, G139 data at the expense of a slightly worse fit
to the q =5, 7, and 9 results. This may be simply fortui-
tous or, on our noting that the quantized Hall conduc-
tivity in the integer QHE is ts„y =le /h where i is an in-

teger, might suggest a fundamental connection between
the fractional and integer QHE. However, our data are
presently limited to the N=O Landau level and the
overall situation may be more complex.

In our experiments the samples were mounted at field
center in the dilute phase of a dilution refrigerator and
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thermometry was provided by a calibrated 220-0 peer
resistor, corrected for magnetoresistance. Great care
was taken to ensure thermal equilibrium between the
sample-thermometers combination and the He- e
mixture. An "in-phase" current of accurately 20.0 nA
was used in the ac lock-in measurements and the Hall
bar length-to-width ratios were defined by precise sample
lithography.

I F' . l (a) we show a full-field (10 T) trace of p„,n ig. a we
139p~ a a ord t for the modulation-doped hetero]unction

(1600-A space layer) with n =0.95&10 cm an
@=1.04X10 cm /V s. The development of fractional

minima and p„plateaus at selected temperatures
down to 50 mK for the regions 1 & v & 2 and 2 & v

is summarized in Figs. 1(b) and 1(c). The 50-mK ata
0 ig. c sf F' 1( ) show a well-developed hierarchical se-

3 4 5 6quence of fractional states p/q= 5 7 9 all

d
' '

g from the —' parent, with corresponding quanti-
zation of the Hall resistivity at (q/p /e . e

1daughter states -', , —,', and -', of the —, parent are equa-
ly well resolved as can be seen from Fig. 1 (a). Activa-
tion plots, lnp„„vs 1/T, are presented in Figs. 2(a) an
2(b) for fractional states v & 1 and 1 & v & 2, respective-
ly. We extrapolate the activated straight-line region at
intermediate temperatures to 1/T=O as shown to deter-
mine p,'„=p„„(1/T=O) and a„'„ is then obtained from
E . (1). At low temperature the Fig. 2 results exhi it
curvature identified with the hopping regime. While it
is shown in Ref. 9 that allowance for the hopping contri-
bution in the activated region leads to A values for q &
=25% larger than those obtained from the straig t ine
through the high-T data (for q 3 the difference is negli-
gible), this consideration does not affect the determina-
tion of p„'„. From the functional dependence of the hop-

ping which falls to zero at 1/T=O, straight-line extrapo-
1

' f" " high-T data or of corrected data afteriation o raw
subtraction of the hopping component leads to identical
intercepts.

The invariance of a„'„ for fractions of the same q is not
immediately obvious from the p„'„result. If we set c= 1

in Eq. (2), which is within the error bars of the data, it
follows from Eq. (1) that

pc (h/2e 2) [q
2 (q/p) [p 2q 2 4] i/2)

However, a more transparent relation is obtainea if we
th t " in units of h/e (=25.8 kA) is consider-

ably smaller than (q/p)2 in the denominator o q.
and hence p„'„=(1/p )h/e . Consequently, the con-
sistency of the Fig. 2 data with the form of Eq. (2) can
be observed directly on our noting that p„'„ is approxi-
mately the same for p/q fractions of the same p and
scales as =1/p .2

Values for A (without hopping subtraction), p„'„, an
a„'„obtained from Fig. 2 and Eq. (1) are presented in

Table I. The a„'„values are plotted against 1/q in Fig.
and compared with curves a and b corresponding to q.
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FIG. 1. p„and p„~ data for the GaAs-Gap. 68A10.3&As sample
6139;n=0.95X10"cm 2 and p 1.04x10 cm /V s.

(2) with c=0.91 and c=1.0. In the inset of Fig. 3 we
also show a loga„'„vs logq plot and the straight-line best
fit (curve c) discussed above. The fits provide convincing
evidence that a,'„=c(e/q) /h where c is a constant close

9 10to 1.0. We note that "6"for the 7 7, and 9 states is
=20-30 mK and the quasiparticle pair-creation energy
2A is below the range of the exponential analysis. How-
ever, the weak temperature dependence of p„„own to
50 mK for these fractions places an upper limit on t e
true activation energy and our extrapolation provides a
reasonable estimate of p„'„.

Our observation that a„'„ is a constant value for frac-
t' 1 /q ground states of the same q in our high-
quality samples is a new result. There are severa q=
activation studies in the literature for high-mobility sam-
ples which we have extrapolated and found to agree with
the Table I data. ' In general however there is sub-

Cstantial variation, to higher o „va ues, w ichw ich rejects
the distinction between sample-dependent "idea" an
"non-ideal" behavior found in the early activation inea-

11surements on Si inversion layers.
The results also raise questions for localization. The

existence of a universal minimum conductivity am;„an
mobility edge in 2D has remained controversial. "Exper-
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d ort for thisiments on Si inversion layers provided supp
d th theoretical estimate for noninteracting

However, following the development of scaling t eory,
luded that there is no sharp mobility edge init was concu e a

2D, but there is a universal crossover Lrom ogari
exponential behavior for the conductivity. The situation
in a ma netic field is unclear, however, and it is argue "in a magne ic e
that since the integer QHE shows a aws that all states in a
Landau level cannot be localized, the theory o A ra-
h l ' is not applicable. Consequently, cr„'„couhams et a . is
be interprete as a mi

'
d minimum quasiparticle conduc

' '
y'

h 'thin the understanding that FQHE quasiparti-whic, wi in e
c es behave analogously to electrons in Lan au

tation is provi e y e'd d b the activation study of Chang et
al for v= —, w . o argueh that the variation of 6 between
v=0.6 and 0.7 can be understood in terms of quasipar-
ticle/quasi oe an s w'h 1 b d here disorder broadens the bands

t "
harp mobility edge" separating ex-

tended and localized regions. Adopting their mo e,
we have s own ah that A can be obtained from the

7temperature-dependent widths o p„„' ', '
of minima, in goo

agreement with values from lnp„„1 vs 1/T plots. A con-

stant a„', for fractions of the same q is also obtame in
the width analysis.

The concept of a quasiparticle excitation of charge

p/q a(T) ~(K) p,'„(kn/a) a' (e'/h)
2
3
4
3
5
3
2
5
3
5
7
5
8
5
3
7
4
7
9
7
10
7

4
9
5
9

Average

5.9
2.9
2.4
9.8
6.5
2.8
2.5
9.2
6.9
3.1

2.8
8.8
7. 1

1.72
0.59
0.42
1.37
0.67
0.138
0.14
0.50
0.21
0.019
0.018
0.084
0.027

6.8
1.8
0.94
6.8
2.5
0.36
0.354
2.5
1.35
0.27
0.25
1.26
0.99

1.02/9
1.11/9
0.91/9
1.04/25
0.87/25
0.68/25
0.88/25
0.87/49
0.84/49
0.85/49
0.97/49
0.78/81
0.96/81
0.91/q '

TABLE I. 6, p»», and o,'„values for p/q states in sample
6139.
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how far it should be generalized to v =p/q. Tao on the
other hand clearly predicts that if a fermion or a boson
system has a quantized Hall step at v =p/q with

o,y =(p/q)e /h where e is the charge of the fermion or
boson, identical quasiparticles of fractional charge
(p/q)e can be produced. Our data provide the first
means of distinguishing between these theories and con-
firm the Laughlin-Haldane result.

We are grateful for helpful discussions with P. A.
Maksym, M. Pepper, R. J. Nicholas, and R. A. Stra-
dling.
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FIG. 3. o„'„vs 1/q for p/q fractional states in sample G139.
Inset: Logo„'„vs logq. Fits a, b, and c correspond to Eq. (2)
with c =0.91 and 1.0 and the relation o,' =(1.07/q ')e /h.

~ e/q at v = I/q, due to Laughlin, has been extended to
a hierarchical picture of fractional states v =p/q by Hal-
dane who shows that e*=+ e/q (independent of p)
consistent with the Laughlin gauge-invariance argument.
In a Wigner-crystal approach, Kivelson et al. ' conclude
that "e*= + ve where v denotes one of the preferred ra-

tional filling fractions. " Their theory, which has now

been shown to be consistent with Laughlin's, ' is essen-

tially developed for v=1/q, however, and it is not clear
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