
VOLUME 60, NUMBER 17 PHYSICAL REVIEW LETTERS 25 APRIL 1988

Optimized Trial Wave Functions for Quantum Monte Carlo Calculations

C. J. Umrigar, K. G. Wilson, and J. W. Wilkins

Theory Center and Laboratory of Atomic and Solid State Physics,
Cornell University, Ithaca, Ne~ York 14853

(Received 24 December 1987)

We present a procedure for obtaining optimized trial wave functions for use in quantum Monte Carlo
calculations that have both smaller statistical errors and improved expectation values, compared to corn-

monly used functions. Results are presented for several two-electron atoms and ions (including some ex-
cited states) and for the Be atom.
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Monte Carlo (MC) calculations have been shown to
provide energies of small atoms and molecules that are
comparable to the best configuration-interaction (CI)
calculations. ' The most commonly used trial or guid-

ing wave functions that are used in the calculation con-
sist of a Hartree-Fock determinant multiplied by a Jas-
trow correlation factor (HF-J) or a multiconfiguration
self-consistent-field function (consisting of a small linear
combination of determinants) multiplied by a Jastrow
function (MCSCF-J). Using these wave functions, vari-
ational MC calculations typically recover about 15%-
80% of the correlation energy and diffusion MC and
Green's-function MC calculations recover about [80
-100(+ 2)]% of the correlation energy. In this Letter
we present a procedure for the determination of wave

functions that even in a variational MC calculation re-
cover more than 99.99% of the correlation energy for the
ground and excited states of two-electron ions, and 99%
of the correlation energy for the Be atom.

Past attempts at finding improved trial wave functions
have mostly consisted of adjustment of the parameters of
the wave function to minimize the expectation value of
the energy E. With this method it has been possible to
optimize at most a few parameters since a single calcula-
tion of E takes a significant amount of computer time,
and this must be repeated several times before an op-
timal set of parameters is found. Instead, we have

developed a procedure wherein we minimize the variance
of the local energy. More specifically we find the pa-
rameters in tit that minimize

g; ='"j [Htir(i )ltir(i) Eg] w(i)—
0'ppt Wg; =")w(i)

where w(i) =
~
y(i)ltiro(i) ~, Es is a guess for the energy

of the state we are interested in, and the sum is over a
fixed set of configurations of the electrons samples from

~ tiro~ . thoro is taken to be the best wave function avail-
able before we start the optimization procedure, usually
HF-J.

The chief advantage of this procedure is that 500 to
2000 configurations are found to be sufficient —a re-

markably small number considering that some of the
functional forms tried had as many as 100 free parame-
ters. There are two reasons for this. First, the
configurations over which the optimization is performed
are fixed, and so we are using correlated sampling to ar-
rive at an optimal set of parameters. Hence the
difference in the cr»&'s for two sets of values of the pa-
rameters being optimized, is much more accurately
determined than the values of the cr»f s themselves.
Second, we are performing a fit, not an integral. So, if
the true wave function were representable by an n

parameter trial wave function, then only n configurations
would be necessary to determine the n parameters exact-
ly. As with all nonlinear optimization problems, it is

possible to get stuck in local minima. Hence the wave
functions that we have determined are not necessarily
the best possible for that form of the function. However,
we demonstrate that it is relatively easy to find wave
functions that are much better than those commonly
used.

Another advantage of our procedure is that the quan-
tity being minimized has a known lower bound (namely
zero). Also, since any eigenstate has zero variance of the
local energy, it is possible to calculate excited states as
well as the ground states.

The initial value of Eg in Eq. (1) is taken to be the ex-
pectation value of the energy for the initial trial wave
function (HF-J or MCSCF-J). Once an improved trial
wave function is found, another MC run is performed
with this improved function and the expectation value of
the energy from this MC run is used as the new Eg.
Typically only two iterations are required to obtain a
self-consistent value of Eg.

The most commonly used trial wave functions have the
form

&d.t
y= g (d,D~D„)+exp[ajrj/(I+br J)],

n=l i(j
where Dt (Dt) are the up- (down-) spin Slater deter-
minants and r;~ is the interelectron distance of the ith
and jth electrons. This form consists of a MCSCF-like
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y;(r)= g C;,r"' 'e "I'I (r).
j=l

(2)

The electron-electron cusp condition implies that the
Jastrow a;j equal —,

' for antiparallel-spin electrons and —,
'

for parallel-spin electrons. Having a diA'erent Jastrow b

for antiparallel- and parallel-spin electrons does not re-
sult in a significantly better wave function; hence a single
b is used.

As a first step in finding better wave functions we used

the same form for the wave functions but optimized the

d„, C;, , g, , and the Jastrow b. This leads to significant
but not large improvements in the wave function. Next
we altered the form of the wave functions. In this Letter
we present results for one of the more successful forms of
several that were tried. For a two-electron ion there are
only three independent variables, which we can take to
be r12=

~
r1 —

rq ~, s1q=r1+r2, and 11' =r1 r2. Hen—ce
we generalize the Jastrow correlation function to include
correlations between two electrons and the nucleus,

P ( IQ l & rtj)$(j v rcj )'
1+P(fbI,rj, s~j, r~j)

where P is a complete fourth-order polynomial in r, s, t

with coefficients (al or IbI. Antisymmetry of the wave

function under the interchange of two electrons implies
that the coefficients of all odd powers of t vanish. For
large r, s, r the correlation function tends to a constant.
In the limit that the order of P is infinite, it fully de-
scribes the correlation between two electrons and a nu-

cleus in a two-electron ion, but lacks some of the higher-
order correlations in a multielectron ion. Hence we ex-

part (consisting of a sum of determinants) and a Jastrow
part (involving a product over all pairs of electrons).
The orbitals in the determinants are themselves linear
combinations of Slater functions times spherical harmon-
1cs:

+basts

' 1/2+MC

cr = ' g [Her(i)/y(i) E] ' '—
&Me I-1 (3)

The sums are over NMC configurations of electrons sam-
pled from

~
11c~ . The value of NMC was in every case

between 10 and 10 . If the N, zt in Eq. (1) is not
sufficiently large or the cusp conditions are ignored, then
cr from Eq. (3) will be large even though cr,z& from Eq.
(1) is small.

pect to see, and do see, much larger improvements for
two-electron ions than for multielectron ions.

The local energy Hy/y in Eq. (1) diverges when an
electron and a nucleus overlap (r =s =t) or when two
electrons overlap (r=t =0) unless the wave function
obeys the cusp conditions which ensure that the infinite
potential energy is canceled by the infinite kinetic ener-

gy. The reason that CI wave functions converge slowly
is that they attempt to reproduce the electron-electron
cusp with functions that do not have a cusp. Our func-
tional form is capable of satisfying the cusp conditions
and therefore is more compact.

The condition for the electron-nucleus cusp is (Bligh/Bs—By/Bt) ~, =, =, = —Zy, and that for the electron-
electron cusp is [By/Br], =, =o =@/2 or tjr/4 for antipar-
allel or parallel spins, respectively. Imposition of these
conditions on our 11c results in 17+n«b coupled quadratic
equations where n„b is the number of orbitals in the
determinantal part of y. For maximum variational flexi-
bility we imposed the cusp conditions approximately by
including in Eq. (1) additional terms proportional to the
square of the errors in satisfying the cusp conditions. By
our scaling up or down the prefactor of these terms, the
cusp conditions can be imposed more or less exactly.

Once an optimized wave function is obtained, a long
MC calculation is carried out to calculate the expecta-
tion value of the energy E and the IIuctuation in the local
energy,

TABLE I. Performance of various wave functions for ground and excited states of two-electron ions. For each wave function, the
first line gives the error in the expectation value of the energy and the second line gives the standard deviation of the local energy, in

hartrees. The expected statistical error in the last digit is in parentheses.

Wave function

"Exact" energy (nonrelativistic, ~ mass)
(1) HF'

(2) HF+Optim. (Jastrovv)

(3) Optim. (Det. + Jastrow) '

(4) Optim. (Det. +Expon. Pade)'

1'S H

0.527 751'
0.039 821
0.31
0.0»3(3)
0.082
0.007 9(2)
0.070
0.000005(3)
0.0021

1'S He

2.903 724'
0.042044
0.65
0.01S9(6)
0.23
0.004 1 (3)
0.14

—0.000 002 (4)
0.0011

2'S He

2. 175 229
0.000978
0.054
0.000 5(1)
0.028
0.00005(5)
0.020

—0.000 003 (2)
0.00071

3 SHe

2.068 689b

0.000 21
0.024
0.00010(3)
0.010

-0.00004(3)
0.009(1)
0.000001(1)
0.0013

1 IS Be2+

13.655 566'
0.044 267
1.4
0.016(1)
0.48
0.003 5 (2)
0.30
0.000001(6)
0.0034

'Reference 7.
Reference 8.

~0 free parameters.

1 free parameter.
'3,4,7 free parameters for 1'S, 2 S, 3 S states, respectively.
41,44,47 free parameters for 1'S, 2 S, 3 S states, respectively.
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In Table I we present our results for a variety of two-

electron ions and for several different wave functions
that get progressively better. For each of the wave func-
tions, the first line is the error in the expectation value of
the energy AE =E E—„„,and the second line is cr.

Wave function 1 is the HF wave function. Wave func-
tion 2 is the HF wave function with an optimized Jas-
trow function. For the 'S states, both hE and a are re-
duced by approximately a factor of 3. For the S states
the reduction is smaller, about a factor of 2. This is to
be expected since, for the S states, the fact that the two
electrons are in different orbitals and the antisymmetry
of the wave function keep the electrons apart and so the
Jastrow function plays a less important role. For the
same reason, hE and o are smaller for the S states than
the 'S states. Wave function 2 is of the type most com-
monly used in the literature. Hence we will compare our
improved wave functions to it rather than to wave func-
tion 1.

Wave function 3 has the same form as 2, but the CiJ's
and the (, 's of Eq. (2) are also optimized. For each ion
we increased the number of basis functions Nb„;, in Eq.
(2) until no significant decrease in the value of o was ob-
served. This resulted in our using two Is basis functions
for the 1 'S states, two Is and one 2s basis functions for
the 2 S states, and two Is, one 2s, and one 3s basis func-
tions for the 33S state. Except for the very extended H
and 3 S He states, AE is improved by about a factor of 4
and o by about a factor of 1.5.

As the wave function is improved, the reduction in the
value of hE is more rapid than the reduction in o, in

spite of the fact that the quantity that we are optimizing
is o. Hence, as the wave function is improved, the num-

ber of MC updates NMc required to obtain a statistically
significant value of hE keeps increasing. Already for
wave function 3, some systems have statistical uncertain-
ties (given in parentheses) of comparable magnitude to
hE. Hence the values given are useful for the estimation
of an upper bound to hE rather than the value of AE.

In wave function 4 the simple Jastrow correlation
function is replaced by a fourth-order exponential Pade
form and all the parameters are optimized. Now the
correlation part of the wave function has sufficient varia-
tional freedom that we get as small a value of o using a
single g function in the orbital of the 'S states as we get
by using a double g function. The reduction in o, com-
pared to wave function 2, ranges between 7 and 200.
The reduction is greater for the 'S states than the S
states. Since the number of MC updates required to
achieve a given uncertainty in the energy is proportional
to a, this represents a large reduction in the computer
time needed.

Two of the states, H and 3 S He, are particularly
interesting. H is often cited as a failure of the HF and
the local-density-functional methods since they predict
that H is not bound. However, the error in the HF en-

TABLE II. Same as Table I, but for the Be atom.

Wave function

"Exact" energy (nonrelativistic, ~ mass)
(1) HF

0 free parameters
(2) HF+Optim. (Jastrow)

1 free parameter
(3) Optim. (Det. + Jastrow)

4 free parameters
(4) Optim. (4 Det. + Jastrow)

7 free parameters
(5) Optim. (Det. + Expon. Pade)

44 free parameters
(6) Optim. (4 Det. +Export. Pade)

47 free parameters

'S Be

14.667 33(3)'
0.094 31
1.5
0.060(2)
0.53
0.040(2)
0.35
0.009 4(9)
0.34
0.022 6 (9)
0.15
0.0009(3)
0.092

'Extrapolated value from Ref. 9.

ergy is, in fact, slightly smaller than for the 1 'S states of
other two-electron ions. Our optimized wave functions
yield a very accurate value for the energy, but the optim-
ization procedure did not produce reliable wave functions
until we added in a few additional configurations (be-
sides those sampled from i yo i ) that had electrons at a
very large distance from the nucleus.

The 3 S He state is of interest since it is a true excited
state, i.e., it is not the lowest state of that symmetry.
(Excited states that are the lowest states of their symme-
try are no harder to calculate than ground states. )
Green's-function MC calculations do not give reliable
energies for true excited states. However, since any
eigenstate has by definition zero variance of the local en-

ergy, true excited states do not pose a special problem
for our optimization scheme. The 33S He state demon-
strates this.

There have been several CI and MCSCF calculations
of Be, the most accurate of which are those of Bunge,
and several MC calculations, the most accurate of which
are those of Harrison and Handy. 2 In Table II we
present our results for the Be atom. Wave functions 1-3
are similar to those of Table I. The orbitals are expand-
ed with two Is and one 2s Slater functions. The value of
hE of wave function 2 is in close agreement with that of
Ref. 2, as it should be. Wave function 3, with optimized
determinantal parameters, has a 50% smaller value of

The 2p orbital energy of Be is nearly degenerate with
the 2s orbital energy and can be expected to mix in

strongly. Wave function 4 is a two-configuration, four-
determinant ( I s 22s 2, I s 2p„z, I s 2p~2, I s 2p,2) function con-
structed from a two-ls, one-2s, one-2p basis. Although
rr improves only slightly coinpared with wave function 3,
AE improves by more than a factor of 4. The value of~ is 2 times smaller than for the three-configuration
(five determinant) MCSCF-J function of Ref. 2 because
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the parameters are not optimized in Ref. 2.
Wave function 5 is a single determinant with an ex-

ponential Pade form. Interestingly, compared to wave
function 4, it has a considerably smaller o but a consid-
erably larger ~. Wave function 6 consists of four
determinants with an exponential Pade form. It recovers
99% of the correlation energy, more than any previous
CI, MCSCF, or MC calculation of Be with the exception
of the 650-configuration (43 basis functions), CI wave
function of Bunge.

We have shown that it is possible to optimize wave
functions that have a large number of variational param-
eters. The method works for excited states as well as
ground states. Although only the fluctuations are explic-
itly minimized, the error in the expectation value of the
energy is often reduced by an even larger amount. For
the simple systems treated in this paper the improve-
ments are large. Preliminary calculations on two ten-
electron systems, ' Ne and water, show that significant
improvements can be obtained and that 1Vopt does not in-
crease rapidly with the number of electrons. Further im-
provements will hinge on the development of compact
and accurate functional forms for the wave functions.
The wave functions used in conventional electronic struc-
ture methods are constrained to be constructed from
single-electron orbitals. MC methods, combined with
the optimization scheme developed in this Letter, open
up the possibility of the use of new classes of functions
involving multielectron coordinates that are capable of
describing the wave function more compactly and/or
more exactly.

The feasibility of the optimization scheme has been
demonstrated in this Letter on a few simple systems, but
the scheme can be applied to any quantum MC calcula-
tion. In fact, as pointed out by Nightingale, " using the
transfer matrix technique, it can also be used to improve
classical MC calculations.
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