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Hamiltonian Reduction of Unconstrained and Constrained Systems
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Recent Letters and Comments discuss the quantization of self-dual two-dimensional Lagrangeans
which describe systems that are not explicitly canonical. We make some remarks on the most efficient
method for exhibiting the canonical structure.

PACS numbers: 11.10.Ef

g'=p;, i =1, . . . , n,

g'=q', i =n+1, . . . , 2n,

and the Lagrangean one-form L dt, we can write (1) as

L dt = —,
' g'fP dg' V(()dt, — (2)

where a total time derivative (an exact dilferential form)
has been dropped. Here fj is the symplectic 2n x2n ma-
trix

0 I
fo (3)—I 0

1J

The first term on the right-hand side of (2), a
—:2 g'f jd&j, is called the canonical one-form; the two-
form f =da = ,' fjdg'd(' is the sym—plectic two-form.
In our example a is linear in g and f is constant. But
we may also consider the more general situation where
the symplectic two-form is not constant. The Lagrange-

It appears that some of our contemporary colleagues
are unaware of modern, mathematically based, ap-
proaches to quantization, especially of constrained sys-
tems. They keep the prejudice that Dirac's method, '

with its Dirac bracketing and categorization of con-
straints as first or second class, primary or secondary, "is
mandatory. " Let us describe an alternative approach.
We shall speak of "Hamiltonian formulation, " rather
than "quantization, " because issues of quantum operator
ordering are outside our scope.

To begin, one must refrain from viewing a Lagrangean
that is first order in time derivatives as necessarily
describing a constrained system. Indeed, our starting
point is that the dynamical equations of interest be de-
rived from a first-order Lagrangean, which for an initial,
simple example we take (summation convention is used)

L =p, q' —H(p, q), i =1, . . . , n.

Upon introducing the 2n-component phase-space coor-
dinate

an one-form

L dt =a;dg' —V(()dt (4)

with arbitrary one-form a =a;dg' gives rise to the Euler-
Lagrange equations

f;,j j =av/ag', (5)

fij =;aj . tti
ag' j (6)

When the two-form f=da = ,' f—jd('d(j —is nonsingular,
the matrix inverse to fj exists, and (5) is equivalent to

j '-f;, 'av/agj. (7)

Since the Hamiltonian corresponding to Lagrangean (4)
is V(g), Eqs. (7) are also Hamiltonian,

j' = IV, g'l =

provided the basic bracket is defined to be

(9)

For the simple case (2), the bracket (9) reduces to the
usual jp'iqj) =8'j, etc. ; the general case for nonsingular
two-forms, i.e., for those with an inverse, is no harder.
This provides a justification for the commutators posited
by Floreanini and Jackiw, 2 as was also briefly indicated
in the Appendix to that paper.

It should be stressed that no discussion of constraints
need be made: There are none as is clear from (7). Be-
cause g is already a phase-space variable, it is inap-
propriate to call a; =aL/a(' "p~, the momentum conju-
gate to g', " to impose primary, second-class constraints
p~ —a; =0, and to introduce Dirac brackets. Neverthe-
less, this roundabout procedure does ultimately produce
the bracket (9), as Costa and Girotti show.

Constraints arise when f is singular so that the matrix

fj does not possess an inverse. In that case we proceed
as follows. It is well known from the theory of
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differential forms (Darboux's theorem) that for any
one-form a =a;dg', i =1, . . . , N, it is always possible to
change variables

gi (p(' k ()

j,k =1, . . . , n, 1=1, . . . , %—2n,

(lo)

The equations

ae/az(=O (12)

may be used to evaluate the z's in terms of the p's and
q's; however, if the matrix 11 N/8z" Bz' is singular, it will

prove impossible to do so. It is easy to convince oneself
that in the generic case, after having eliminated as many
variables of type z as possible, one is left with an expres-
sion linear in the surviving z-type variables. Thus, after
diagonalization and z elimination, one arrives at

L =p; q' H(p, q) —X—(y((p, q), (13)
where now we have renamed the remaining z variables as
Xi—the Lagrange multipliers —ttnd the p' are the only
true constraints in the problem:

t (14)

2= —E A —
—,
' (E +B )+A V E+iyy"(8„+iA„)y

so that a, which defines the canonical variables, takes the
standard expression a =p;dq' (apart from an additive ex-
act differential —total time derivative). In the uncon-
strained cases discussed above, with invertible matrix f(,
the variables of type z are absent and (10) effects a "di-
agonalization" of a nonconstant fl into the standard
form (3), producing the Langrangean (1). In the gen-
eral case, only a 2n x 2n subblock of fJ is "diagonalized"
and N —2n degrees of freedom (corresponding to the z')
are absent from the new canonical one-form. They sur-
vive, however, in the rest of the Lagrangean, which now
reads

L p;dq' N(p, q,—z)dt.

Equations (14) may be used to continue the elimination,
reducing (13) to the original form (4), Ldt = b;((()dg'
—W(r()dt, but with a diminished number of variables.
Then the entire procedure must be repeated, until one
finally arrives at an unconstrained Lagrangean as in (1).
No discussion need be made whether the constraints are
first or second class, primary or secondary. It is useful to
know that when at a given stage the constraints are first
class [Ip",p'I

~
=0=0] and commute with the Hamil-

tonian [[H,p'
~
&=0=0], or second class [detjp,

p']
~
~=0&01, then one more step of elimination will lead

to the unconstrained Lagrangean. If at some stage the
elimination is too difficult to carry out, one may resort to
Dirac's approach. Let us stress that the elimination of
variables with the help of (12) and (14) is allowed, since
our calculations are variational.

Bernstein and Sonnenschein5 make the interesting
point that Siegel's constrained action becomes equiv-
alent to that of Ref. 2 after "path-integral quantiza-
tion. . . with first- and second-class constraints. " While
the assertion is true, it is established by Dirac's
machinery. Use of the above formalism renders the ar-
gument immediate. Siegel's second-order constrained
Lagrangean density

Xs= —, B„y8"(t(+ —,
' X(j—y')'

is equivalent to the first-order

&=«(j y') —[2(1—+X)l '(« —y')'.

[Overdot (prime) denotes time (one-space) differentia-
tion; k is the Lagrange multiplier. ] This is already of the
form (13) [I/2(1+X) X], and the solution of the con-
straint « =p' leaves J =p'p —

(tt ') 2 as in Ref. 2.
For an illustration of the general method when rediag-

onalization is required, let us show that spinor electro-
dynamics is quantized without choosing a gauge. The
first-order Lagrangean density

(15a)

is of the form (13) with one Lagrange multipler A that enforces —V p =@ y =—p, where —Vy=EL, the longitudinal
part of E=ET+ EL, . The solution of the constraint leaves (apart from total spatial derivatives)

X= —ET AT+p(V/V ) AL+iy jr —
2 (ET —pV p+8 )+y a (i V+A)y. (15b)

exp[i(V/V2) AL] y.

Then we are left with

L= —ET AT+i@ jr —Hc, (15c)

The longitudinal vector potential AL, A =AT+ AL,
enters the canonical one-form of (15b) in an uncanonical
way. To rediagonalize, only the fermion field need be
redefined:

the transverse vector potential. The same analysis can
be given for any electromagnetic system, and similarly
for gravity theory, but there one stops at a Lagrangean
in the form (13), with four first-class constraints.

Finally, let us observe that a first-order Lagrangean
(4) may be viewed as the m 0 limit of a second-order
Lagrangean

where Hc is the Coulomb-gauge Hamiltonian with only L (z) = —,
'

mg '(~+a;( ' —V(g ). (16a)
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Since the Hamiltonian is

H(2) =(2m) )(pf —a;)'+ V(g), (16b)

DE-AC02-76ER03069.

the limit may be taken in phase space only when the con-
straint p~=a; is imposed. This observation is useful to
the following end. One may wish to compute commuta-
tors of some operators 6 in the theory (4), but technical-
ly it may be too difficult to do so, because fi ) cannot be
explicitly constructed. On the other hand, similar com-
putation in the theory (16) may be straightforward be-
cause of the simpler, expanded symplectic structure. We
may now assert that if (r) commutes with the constraint

pf —a; when the latter vanishes, the results in the two
theories will be the same. Thus, for example, the recent
determination of anomalous Gauss generator commuta-
tors in a gauged nonlinear cr model with a quadratic ki-
netic and first-order Wess-Zumino terms also establishes
that the same result holds in the theory without the
quadratic kinetic term.
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