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Factorization of a Two-Loop Four-Point Superstring Amplitude
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The behavior of the two-loop four-point gravitation amplitude is investigated in the type-II superstring
theory, where the genus-two Riemann surface degenerates into two tori. The amplitude turns out to be
finite in this limit and it is shown explicitly to the lowest order of the pinching parameter that it produces
the product of two one-loop amplitudes, as is expected from the factorization property.

PACS numbers: 12.10.6q, 04.50.+h, 11.17.+y, 11.30.Pb

There has been much interest in superstring theories'
as candidates for a unified theory of all interactions. Al-

though superstring theories are expected to give us finite

loop amplitudes to any order in perturbation theory, it is

difficult to show the finiteness of amplitudes explicitly
beyond the one-loop level, mainly because it is not yet
clear how to treat so-called supermoduli for higher-genus
Riemann surfaces. The purpose of this note is to clarify
the role of supermoduli by looking at the factorization of
a two-loop four-point superstring amplitude.

Recently it has been found that the picture-changing
prescription for supermoduli has some strange features,
such as total derivative terms or the unphysical poles of
space-time supersymmetry current. The behavior of the
degeneration limit of the amplitude seems to vary de-

pending on which part of the Riemann surface we place
the picture-changing operators on. It turns out that it is

convenient to put the ghost field j suitably and to deform
the contour of the Becchi-Rouet-Stora-Tyutin (BRST)
current in such a way that the degenerating Riemann
surface has a correct physical projection at the two punc-
tures. Here I use the prescription for supermoduli,

where the positions of the supercurrents are integrated
over the entire Riemann surface. In the degeneration
limit, it is postulated that two of the super-Beltrami
differentials become those corresponding to punctures
and my prescription turns out to satisfy the correct fac-
torization property. The relation between the present re-
sult and that by the picture-changing prescription will be
briefly mentioned later.

Throughout this paper I restrict my analysis to the
four-point graviton amplitude where the trivial homology
cycle of the genus-two Reimann surface is pinched, and I
discuss the degeneration only to the lowest order of the
pinching parameter for simplicity. Although only the
type-II superstring is considered here, the behavior of the
amplitude of the (uncompactified) heterotic string
theory6 is the same, since if the tachyon pole is ab-
sent for right movers, then the amplitude behaves like
ft d t, which vanishes after the phase integral, as is
the case at one loop (t is the pinching parameter).

The two-loop four-point graviton amplitude of the
type-II superstring theory after integration over super-
moduli is
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V(u/) =g„,(BX"+ik yitr")(8X"+ik i/ritr')e' '

is the graviton emission vertex, and the factors Zi are defined by Z&=(det'Bi) ' det'Bi, for the reparametrization ghost
(X =2), the superconformal ghost (X = —', ), and scalar fields (X =1) (see Alvarez-Gaume et al. , Knizhnik, Eguchi, and

Ooguri, and Dugan and Sonoda, ' and Verlinde and Verlinde for details).

T ( ). = lg(ill. X"+i),,")+(2c-&P+38cP —yb). ,

TF (z),*e* =i7le". (8 .X"+i) "*)+(2c*BP*+3alc*P*—y*b*) ...
are the supercurrents. b, c,b*,c*,p, y, p*, y* are the reparametrization and the superconformal ghosts, respectively, and

k,",k,"* are the Lagrange multipliers introduced to make the term X'y"Z, y„ linear in the gravitino X in d =2 supergrav-

ity. Note that there is no 8 function in the correlation function ((B,X"+iX,")(B„.X' +il'. ), ) due to Xg. r;, is the

period matrix of the genus-two Riemann surface and Om(z) is the Riemann 0 function with spin structure
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1m = [ml, m2]. /4; m (i =1, 2) is the super-Beltrami
differential with conformal dimensions ( —

—,', 1). The C&
coefficient, which appears in the summation over the spin
structures, is identically 1 for flat ten-dimensional 2
space-time. The reason is that one automatically gets
the coefficient of the Gliozzi-Scherk-Olive (GSO) projec-
tion" for each torus from (Z3/2)m in the degeneration
limit, as can be seen below.

Here I only discuss the degeneration limit as is shown

in Fig. 1 for simplicity. Before analysis of the correla-
tion functions, let us briefly look at the factor Zi in Eq.
(1). In the degeneration limit r diag(rl, r2) (i.e., t

0), where r; is the moduli parameter for each
torus, two of the three Beltrami differentials and two

/4
/ 3's correspond to ordinary and super-Beltrami

differentials for punctures on each torus, and these can
be written as t) derivatives of vector fields or the square
root of vector fields' (see Refs. 8, 10, and 12, and

Masur, ' Yamada, '3 Wolpert, ' and Nelson' for discus- we get, up to higher orders of
and up to numerical constants,

t Z2exp[2zi(rl+ r2)] -ZI -exp[ —(rr/4)i (rl+ r2)]Of (0 I rl ) Of (0 I r2),

FIG. 1. The factorized two-loop diagram with two external
lines on one torus and two on another.

sions on degeneration of Riemann surfaces). The in-

tegrations over the positions of these Beltrami
differentials thus become contour integrals of the distri-
butional Beltrami differentials around the annulus. Us-
ing the property of the contour integral around the an-
nulus

1
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where I have used the fact that A=(1 —r)/2 for genus-one Riemann surfaces and Cm =exp[2zi(m —m;")] is the
coefficient for the GSO projection for each torus. Putting determinants together, we get the following factorized form:

e., (0I.I)'
' ' e.,(0I.2)'

'

Z2Z e (O)'(Z, /,
)-I-r-3/2 C, ,

', Cm,'
Of 0 rl

'
91 0 r2

4

:ax (., )ex"(.,)ax (;,)ax-( ):ii ' ""')r""ci**(i"g"
m, m:even g=l

X 8m(0) (Z3/2)m ( ~ p (zl)V (z2) kl' I/ ll/I'I k2' Y2Y2 k3' W3W3 k4 F4' )

X 8m(0) (Z3/2)m (:~/I (zl)I/i (z2):kl' lpllp[ k2' I/f2lv2 k3' i/f3+3 k4' I$4lp4

Let us now turn to correlation functions of the supercurrents and the vertex operators. In the degeneration limit, only
the terms bilinear in y s contribute because of the summation over the spin structures, and so I only consider these
terms in the following. Also, to the leading order of t, the integrand of z;,z; has a support only on the annulus. Using
the variational formulas in Ref. 8 and the formula (2), I find after the summation over the spin structures that the only
dominant contribution comes from the following (the contribution from the ghost supercurrents turns out to be of
higher order in t):
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where E; (z, w) =HI(z —w I r; )/OI (0 I r; ) is the prime form, "
G;(z, w) =

I E; (z, w) I exp[ —2m[1m(z —w)]'/imr;)

is the scalar propagator for each torus, respectively, p; is the position of punctures on each torus, and the kinematical
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factor K is defined by

(", (;(,"(,'K„„„,=[$'(r —u)/4/(g] (3(2 g4
—

g] (4(2'(3)

+ i $(]' (3[M($2' k3(4' k] +(2 k4$4 k2) —t((2 k4$4 k]+$2 k3(4' k2)l

+ i $(]' $4[r(Q'k4$3'k]+$2' k3(3' k2) —u((2 k3$3' k]+Q k4$3 k2)]

+ i $(2' (3[1((] ' k 3/4' k2+ g] k4(4 k ] ) —u ((] k4(4 k 2+ ('] k3(4' k ] )]

+ i $(2' g4[Q(g]'k4(3'k2+(] k3$3'k]) I((]'k3$3'k2+g]'k4(3'k])]. (3)

Here $= —2k] k2, t = —2k] k4, u = —2k] k3 are the Mandelstam variables. Note that (3) has on-shell gauge in-

variance (i.e., invariance under g; g;+k;) and is symmetric under the exchange (1 2) or (3 4) or (1~3 and
2 4). Terms like g]. k;Q kj(3 kk(4 k] do not appear because of these symmetries. Thus, again by the formula (2),
the amplitude (1) becomes

A(1,2, 3,4) = o t gt"g" gf"g K„„K,„J d'I ~t'I "+„d';J Imr] '" Imr2 '
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As is obvious from Eq. (4) there are neither tachyon poles nor massless poles in the intermediate states, but (4) has
massive state poles at $/8 =&() 1).

Now I compare (4) with the product of two one-loop amplitudes. Since I am discussing only the lowest order of I, I
have to consider the one-loop three-point amplitudes with two massless external lines and one first massive state line. In
the type-II superstring there are three kinds of first massive states. ' Because of the summation over the spin struc-
tures, the only one state which has nonvanishing three-point amplitude is the antisymmetric third-rank tensor with
respect to both left and right movers. It is easy to calculate this amplitude and we get

A(1,2, 3) =g d u
' gg'"k gt'"k)kI"g(k"( k)'g$kg$,

G(u], u3)G(u2, u3)

(Imr)' G(u], u2)

for $/8 =1. Note that this has on-shell gauge invariance
((3p„g3p„+k3[pA„„l). In order to get the amplitude
of Fig. 1, we have to sum over the polarization tensors:

b„'bQ," + (terms with k„).

Because of the on-shell gauge invariance mentioned
above, terms with momentum do not contribute to the
amplitude, and we find that g&,A(1,2, 5)A(5, 3,4) coin-
cides with Eq. (4). Hence we conclude that the first
massive state pole in Eq. (1) is indeed consistent with the
factorization property.

Finally I consider the same amplitude by using the
picture-changing prescription. It turns out that if we
place the picture-changing operator as in Fig. 2(a), then
we have the correct factorized amplitude. It can be
shown, at least to the lowest order of t, that only the
matter supercurrent yy BX contributes in the BRST
current j]]RsT. So, to this order, we can deform the con-
tour of j]3]tsT as shown in Fig. 2(b) without picking up
total derivative terms. This contour integral of j]3]tsT
plays exactly the same role as that of the distribntional
super-Beltrami differentials which I discussed above, and
the amplitudes with the two prescriptions coincide with
each other. Notice that in both prescriptions only matter
supercurrents contribute to the leading order of t In the.

nn

FIG. 2. (a) The picture-changing operator [Q,(1, which is
defined as the contour integral of the BRST current around the
ghost field g, is placed on each torus, and the zero mode (0 is
placed on the annulus. A cross stands for the ghost (. (b) The
contours of the BRST currents on each torus are deformed
onto the annulus. (c) In the degeneration limit, the two-loop
diagram becomes the product of two one-loop diagrams and
each torus has the picture-changing operators at punctures and
the ghost zero mode (0 at a certain point.
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degeneration limit, Fig. 2(b) becomes Fig. 2(c), where
the picture-changing operators guarantee that only phys-
ical states are propagating in the intermediate states.
On the other hand, if two picture-changing operators are
placed on the same torus, then it is not clear whether
there is a physical projection in the intermediate states.
Anyway, we see that supermoduli are important to have
the physical poles in the intermediate states. Although I
discussed only two-loop amplitudes here, if the nonrenor-
malization theorem from zero to three-point function can
be proved for arbitrary genus, it is straightforward to
generalize my analysis to any loop order.

Toward the completion of this work, I received a paper
by Atick, Moore, and Sen' in which a global obstruc-
tion for super-Beltrami differentials is pointed out.
Whether the present prescription satisfies their restric-
tion is yet to be seen. The details and analysis of the am-
plitudes with other configurations of the external lines
will be reported elsewhere.
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