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Lattice Deformations and Plastic Flow through Bottlenecks in a Two-Dimensional Model
for Flux Pinning in Type-II Superconductors
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(Received 12 August 1987)

The deformations of a 2D vortex lattice pinned by a random potential are studied by a molecular-
dynamics annealing method. All but very weak potentials produce a highly defective lattice, consisting
of trapped lattice regions separated by channels in which the vortices flow plastically. It is argued that
this type of deformation is the cause of the observed restricted applicability of collective pinning theory.

PACS numbers: 74.60.Ge, 61.40.+b, 62.20.Fe

The statistical summation of random attractive forces
acting on a deformable lattice is a general problem
relevant to flux pinning in type-II superconductors as
well as to other phenomena such as the pinning of
charge-density waves. The nature of deformations in-

duced by the random potential is of crucial importance
and can fall into three general classes, depending on the
strength of the potential. For very weak pinning, only
elastic and reversible deformations of the lattice occur.
However, the size of this weak-pinning region shrinks to
zero for a macroscopic system. An intermediate regime
exists, in which elastic instabilities are induced but not

plastic deformations. The collective pinning theory of
Larkin and Ovchinnikov applies only to this region. Fi-
nally, there exists a plastic region, in which we find that
pinning centers trap individual lattice particles, and the
lattice becomes highly defective as plastic Bow starts to
take place in between pinned regions. This region has
been shown to be experimentally relevant for supercon-
ducting films.

The theory of Larkin and Ovchinnikov was investigat-
ed numerically by Brandt, who found it to be applicable
in the region of elastic instabilities and, surprisingly,
sometimes even for stronger pins. However, Brandt did
not investigate the actual deformations of the lattice in

detail. We have studied the lattice deformations numeri-
cally using a molecular-dynamics (MD) annealing
method to relax the lattice in the presence of a random

pinning potential. We find that the elastic instability re-
gion is very narrow and that the results obtained for
larger pinning strengths depend critically on the degree
of relaxation. Especially for pinning strengths near the
crossover between the elastic instability region and the
plastic region, we find that Brandt's simulation method
suffers to some extent from insufficient relaxation.

Our system consists of N„, vortices with variable posi-
tions r; =(x;,y;) and Nz pins with random position r;tt'~

in an area 2 =L L~ with periodic boundary conditions.
The potential energy of the system is given by

U=QV, , ((r; —r, ()+QVt (~r; —r,' '~),
i~j i j

V,, (r ) =A„,v (r/R„, ), V (r ) =A v (r/R ),

where v(p) is a Gaussian-type potential. The units are
fixed by the choice A„=1 and the ideal vortex lattice
spacing a0=1. Our simulations are made on systems
consisting of 56, 340, or 1200 vortices with R„=0.6 or
0.75 corresponding to a shear modulus C66=0.2695 or
0.08306 and a compression modulus C~~ =1.9943 or
2.5215. The number of pins is Np =73, 146, and 438
with —1.0~3~ ~ —0.01 and range Rz =0.125, 0.25,
and 0.5.

The main diA'erence between the simulations presented
here and those of Ref. 3 is in the method used to relax
the lattice. The simulations in Ref. 3 were produced by
direct relaxations of the potential energy of the lattice.
We find that such direct relaxations have a pronounced
tendency to become stuck in metastable local minima.
The relaxation technique employed in the present work is
a MD annealing method. In order to apply the MD
technique, we add an auxiliary kinetic term to the poten-
tial (1), and we study H=T+U at very low tempera-
ture. A unit mass is ascribed ad hoc to each vortex. In
this method, energy is extracted or added in the form of
kinetic energy, and the system then repartitions kinetic
and potential energy by following its equation of motion.

The initial relaxation is performed by a gradual cool-
ing down of the vortices from a temperature of about
0.1

~ A~ ~
to (10 —10 )

~ A~ ~
. The cooling is achieved

by our gradually scaling the vortex velocities down. As
the temperature drops, we let the cooling rate decrease
to improve the relaxation. When the relaxed state has
been reached, we shift the center of mass (c.m. ) of the
vortices over the pins in the (10) direction by shifting all
the vortices by a small increment dx =10 to 10
(the smaller increment is used for the strongest pins).
We then let the vortices relax by the MD procedure for
ten time steps, keeping the temperature fixed at the low
temperature reached in the initial cooling. The c.m. is
kept fixed during this relaxation by the subtraction of the
c.m. velocity at the end of each time step. This pro-
cedure amounts to the application of an external homo-
geneous driving force so as precisely to balance out the
pinning force at any instant. We continue the procedure
of successively shifting and relaxing the lattice until the
c.m. has been shifted a distance between 0.25 and 1.2
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the vortices suddenly start to flow plastically relative to
the rest of the lattice (see Fig. 2). This flow takes place
through channel-like paths, in between pinned regions of
the lattice. The successive smooth increase and steep
drop of the potential energy is associated with a reorgan-
ization of the vortices in the channels that has the form
of a pulsating flow. The variation in U(X) and F(X) is

repeated periodically with a periodicity specific to the
given channels in operation. The periodicity changes if
some channels close down and new ones start to flow.
The periodicity typically corresponds to a shift of the
c.m. of the order of O. lao, which leads to periods of the
motion of the vortices in the channels of the order
[N„jN„&,h, &]0.lao, where N„t,h, ) is the number of vor-
tices in the flowing channels. For pins somewhat
stronger than the threshold A~l„, all or nearly all pins
become saturated, each with one or more trapped vor-
tices, and hence the other vortices see a set of fixed
repulsive centers. For the higher pin densities this mech-
anism leads to bottlenecks in the channels, and the ener-

gy release is connected with a string of vortices hopping
through a bottleneck. For lower densities of pins, the
division of the vortices into nonmoving and moving is less
sharp. The channels become broader with the largest
movement taking place in the middle of the streams. In
general the pinned areas remain trapped over the entire
shift of the c.m. .

It should also be noted that the sharp sawtoothed
shape of F(X) is obtained only if the lattice is relaxed
sufficiently during the shift over the pins. Less complete
relaxation gives us the same type of force displacement

F(x)

0.02—

0.0 P
0.0 0.4 08

c0M posITI0N

FIG. 3. The force-displacement curve F(X) for two dif-
ferent degrees of relaxation for the same set of system parame-
ters: N„340, R. 0.6, N~ 105, A~ —0.2, and R~ 0.25.
Curve A was produced with an incremental shift dx 2& 10
and one relaxation per shift. For curve B dx 1X10 and
nine relaxations were made per shift. Curve B does not change
upon further relaxation.
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curves as obtained in Ref. 3. This is illustrated in Fig. 3
where F(X) is shown for incompletely relaxed (curve A)
and fully relaxed (curve 8) simulations. Curve A is very
similar to the result presented in Ref. 3 for the same pa-
rameters (but presumably for a different random place-
ment of pins). Our criterion for complete relaxation,
mentioned above, that dU(X)/dX should equal the mea-
sured F(X), is satisfied by the simulation which generat-
ed curve 8 but not for curve A.

We have analyzed the defects of the vortex lattice by
calculating the root mean square deviation rr from the
ideal lattice and the coordination number of all the vor-
tices. 6 Defects in the vortex lattice show up as vortices
with coordination numbers different from 6. For ~A~ ~« A~~» essentially no defects are observed whereas for
~A~ ~

« A~l» we always find a highly defective lattice.
The total number of vortices with a specific coordination
number varies, as the c.m. is shifted, in a complicated
way. This is an indication of the delicate balance be-
tween storage of the lattice energy in the form of larger
regions with pure elastic shear and storage of it in small-
er sheared regions decoupled by lattice defects.

We consider the plastic flow through channels to be a
qualitative feature of general importance to pinning of
deformable lattices, especially to 2D pinning in type-II
superconductors. At least two important implications
follow from this picture.

The first is in regard to the summation problem: The
total pinning force may be considered to result from the
combined effect of the pins in the flowing channels and
the resistance to displacement of the vortices in the chan-
nels with respect to the pinned regions. The last term is
determined by the flow stress of the lattice. As the pins
become stronger, they eventually each trap a vortex, the
channels narrow, and the pinning force saturates at a
value given solely by the flow stress. Collective pinning
theory' is only applicable for pinning strengths ~A~ ~

~A~l„. We expect the region ~A~ ~

~ A~i» to be the
most relevant to flux pinning in macroscopic systems ex-
cept for very weak-pinning superconductors in weak
magnetic fields. We conjecture that the crossover away
from collective pinning observed experimentally by
Wordenweber, Kes, and Tseui2 is caused by the onset of
the channel flow described above.

Second, the assumption that the flux motion takes
place through a set of channels suggests that simple
models can be used for analytic calculations of the dy-
namics of flux flow and also for the calculation of the
noise spectrum associated with flux flow. This work is in
progress.
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