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Hopping Conduction on Aperiodic Chains

A. Aldea and M. Dulea
Institute of Physics and Technology of Materials, Bucharest, Romania

(Received 2 April 1987)

The dynamic conductivity of one-dimensional hopping systems with aperiodically distributed transi-
tion rates is studied. The low-frequency behavior is shown to be regular or singular depending on the
specific substitution which generates the aperiodicity. Explicit formulas are given for three cases with

diAerent spectral measures of the transition-rate sequences. We give general high-frequency expansions
that are valid whenever the correlation functions exist. A numerical calculation of the conductivity in

the range of intermediate frequencies by a decimation procedure is also included.

PACS nUmbers: 72.90.+y, 05.60.+w

Deterministic aperiodic structures, representing an in-

termediate situation between the random and periodic
ones, are a topic much studied at present, especially since
the quasicrystalline order was discovered experimental-
ly. The theoretical investigation of one-dimensional
quasicrystals produced nontrivial results concerning the
electronic and phononic spectrum, magnetic properties,
and phase transitions in the Ising model. At the same
time, difTerent systems consisting of aperiodic sequences
of some physical parameters (atomic masses, coupling
constants, etc.), generated by finite automata, has been
approached.

This Letter treats the hopping-transport properties of
aperiodic chains. Recent studies concerning hopping on
one-dimensional systems pointed out the importance of
the distribution of their constituents in establishing the
qualitative behavior of the response to external fields. So
the expression for the low-frequency ac conductivity,
which is a problem of first importance in hopping, is reg-
ular for periodic chains and becomes nonanalytic when

the transition rates are distributed randomly. Our aim
is to complete this picture, analyzing the intermediate
case represented by the deterministic aperiodic systems,
and at the same time to identify the basis of the different
frequency dependences.

The model considered here consists of a binary aperi-
odic sequence of transition rates between isoenergetic
sites. The sequence is generated by the use of a substitu-
tion procedure. The structure is completely determined

by our giving a finite alphabet, the initial element, and a
specific rule for the replacement of each letter of the al-
phabet with a finite word. If the substitution is applied
iteratively, a semi-infinite aperiodic chain is built up.

The hopping conductivity will be calculated with use
of the rate equations for the average number of carriers

p„ localized at the site x„. One assumes that the transi-
tion rates satisfy detailed balance in the presence of the
external electric field. The linearization of the rate
equations gives rise to the so-called "resistance network
analogy" introduced by Miller and Abrahams. In this
approach the hopping current is given by the time
derivative of the dipole moment:

o (co) -—lim Q I„d„, —1 . 1

EL-~ L „
(2)

where the "elementary currents" I„, representing the
charge flow between the sites n and n+1, are the solu-
tion of the equations

(ico/w„+2)I„=I„+~+I„~+icoeEd„ (3)

First we shall study the influence of the aperiodicity on
the low-frequency conductivity. In order to simplify our
discussion we shall consider at this stage only equidistant
sites (d„=l). The infinite chain is considered as the
limit of a finite chain of N sites with periodic boundary
conditions. Then, by our making use of the lattice
Fourier transformation of Eq. (3), the dynamic conduc-
tivity can be expressed as a formal fluctuation expan-
sion:

J = lim —'gp„x„,L,
where e is the electric charge and L the length of the
chain. For one-dimensional systems the formalism is de-
tailed elsewhere.

Let d„and w„denote the distance and the transition
rate between the sites n and n+1, and co the frequency
of the external electric field. Then, if we linearize with
respect to the field E, for the model under consideration
the conductivity can be written as

o(co) =o(O)+, lim g q + ~
R(co)

1CO I &N(q) I

'
m'
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where

m, = lim —g w„', ~(O) =1/m1

w- N„

(4)
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and SN(q) is the Fourier transform of the fluctuations 8„
=

Wpg Nl —] '.
—

1

S~(q) =N 'g„e ""6„

(q =2nk/N, k =0, . . . , N —1).

The remainder R(co) represents the sum of all terms
containing fluctuation correlations of order higher than
2. When the limit 1V ~ is performed, the sum

gv ISg(q) I
. goes into the integral fdM(q)

where dM(q) is called the spectral measure of the fluc-
tuation sequence. If the first two terms in Eq. (4) are
sufficient to describe the qualitative frequency depen-
dence of the conductivity in the limit co~o, then it
comes out that the asymptotic behavior is controlled by
the spectral measure dM(q).

The low-frequency asymptotics of the random and
periodic binary chains are already known: Reo(co)
—cr(0) behaves like co'i in the first case and like co in
the second one, which reveals strong differences as re-
gards the analyticity at co=0. This can be explained in
terms of spectral measures: In the random case
dM(q ) =dq (Lebesgue measure), while the spectral
measure of the periodic chain is a sum of equidistant,
equally weighted 8' functions.

The question of interest is how the aperiodic chains

generated by various substitutions will behave. We
choose three examples for which the corresponding sub-
stitutions yield diA'erent spectral measures. For the be-
ginning, let us focus our attention on the more familiar
Fibonacci sequence. In this case, we have a two-letter
alphabet [A,B] and the substitution rule A AB,
8 A so that, starting with A, the resulting chain is
ABAAB. . . . We notice that [since q =0 is excluded in
the sum of Eq. (4)] for the calculation of S~(q) in the
case of binary chains we need to know only the sum over
one species of transition rates (let us say A ), i.e.,

S&(q) =(~&/N)g. e""",

where x„"denote the left ends of the A-type bonds. For
the Fibonacci sequence x„"=n+[(n+1)/r], where [x]
represents the integer part of x and r is the golden mean.
The calculation of Siv(q) can be carried out in a similar
way to the structure-factor calculation for the Fibonacci
quasicrystal (see, for instance, Duneau and Katz,
Elser, and Kalugin, Kitaev, and Levitor ). The result-
ing spectral measure is a sum of weighted 8 functions
centered at the points q„=2n(nr+m)/i (n and m are
any integers), the weights being 2(1 —cosq, )/(q„—2nm) . Then the integral arising from the sum in (4)
can be performed and the following low-frequency con-
ductivity formula is obtained:

2ico gg ~ 1 sin'(nn/r)
m 1 n -1 n 4sjn (nn/v)+icom —

1

N+
2

R(co),
Pl —

&

(5)

where g=
I b~ ba I The above formula shows that the

dominant small-co dependence of Imo is analytic and

similar to the periodic case (i.e., proportional to co). On

the other hand, numerical calculations reveal that, for
Rea, the low-frequency dependence is of the form co (12

—constlnco). The nonanalytic dominant behavior at
co =0 is made evident by the fact that the expression

co '[Reo(co) —~(0)] I -o

(6)
n-i n2 sinz(nn/i)

diverges. (In order to prove this, it should be observed

that whenever n equals a Fibonacci number, the corre-
sponding term in the sum is greater than 1/x . ) The cal-
culation of the higher-order terms in the expansion (5)
can be carried out in the same way. In the third order,
in the limit m 0, the imaginary part is dominated by,
while the real part is similar to, the second-order term.
Hence, the third-order contribution in (5) does not

change the dominant asymptotic behavior given by the
previous one.

For the next part of our discussion we choose a well-

known case with purely singular continuous spectral
measure, namely the Thue-Morse chain. This chain is

generated by the same alphabet and initial element as in

the previous case, but the substitution rule is A AB,
B~BA. We note that after p consecutive substitutions
the chain is a word of 1V =2~ letters. If we take into ac-
count that the fluctuations satisfy the relation 6'„=82„
= —b2„+i, the explicit form of I S~(q) I, which can be
obtained by recurrence, is the following:

I S~(q) I
= —,

'
A Q sinq2~

An expansion in powers of s, performed at the fixed point
(infinite N), gives

g ($) =
4 4 [2 —2$+2Ss +O(s )j,

and introducing (9) in (4) one obtains

(9)

Q2 p2
o (co) =cr(0)+ico, + co' +O(co'). (10)

8gyg 2, 8m

Denoting by g~ the sum over q in (4) for the finite chain
of length N, the following recursion relation can be
proved by the use of (7) and some elementary algebra:

g2~(s) =
8 5 —4s(1+2s)gN(4$ +4$),

s =icom —1/4.
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manifested in the intermediate range.
Returning to the problem of low-frequency depen-

dence, we find that interesting properties are exhibited
by the Rudin-Shapiro chain. This is built up by a four-
letter alphabet jA, B,C,D], the substitution rule A

AB, B AC, C DB, D DC, and in the resulting
sequence replacement of each 2 or 8 with A and C or D
with B. In this way a binary chain is obtained. From
this construction it follows that

~n ~4n ~4n+1 ( 1) ~4n+2 ( 1) ~4n+3.

10-4 This relation gives rise to a recurrence formula for the
second-order fluctuation correlations, which indicates
that in the limit N

10 3 10-2 10-1 10 102

FIG. l. Reo(co) —o(0) (curves A) and Imo(rn) (curves 8)
as functions of frequency for the Thue-Morse and periodic
chain (solid and dashed lines, respectively). The transition
rates are w~ 1, wq 0.01, and co is in units of wg.

The only extra contribution to the ro coefficient comes
from the term of R(c0) containing the third-order fluc-

tuation correlation, but again the remainder does not

change the dominant small-ro dependence.
The above expression shows that the qualitative low-

frequency behavior of the Thue-Morse chain is similar to
that of the periodic chain. Nevertheless, at larger fre-

quencies this similarity is lost. This can be seen in Fig. 1

which represents numerical results for o(ro). They are
obtained by our solving Eqs. (3) by the decimation pro-
cedure. For comparison, the dynamic conductivity of the

periodic chain w~, wit, w~, wit, . . . is also shown. One sees

that, at low and high frequencies, cr(co) exhibits for both

chains a similar ro behavior, but strong differences are

Reo.(ru) m i
—b/co 2+ O(I/n)4),

Imcr(ro) =a/co+0(1/ro3),

~ w~ere

(i2)

'Zn ~n~n+p-~p, W 'Zn ~n

By the use of this result in the expression for
~ SN(q) ~,

one concludes that, in this case, the spectral measure is

dM(q) dq so that the integral over q can be performed
giving an co'~ dependence, as for the disordered chain.
Since the third-order fluctuation correlation vanishes, the
third term in (4) does not contribute to the series. The
higher terms give powers of co greater than —,

'
and, there-

fore, the low-frequency dependence of the conductivity is
randomlike, i.e., nonanalytic. Generalizing our analysis,
we can say that whenever the second-order correlation
function is diagonal, the corresponding chain behaves
like a random one.

The rest of this Letter is devoted to the high-frequency
dependence of a(co), which is a much simpler problem
because Eqs. (3) permit an immediate construction of an
asymptotic series in powers of I/co. With the iterative
procedure presented in Ref. 7, adapted to the chains with
arbitrary-length bonds, the real and imaginary parts of
the I/ro expansion read

mi = lim —gd„w„, w„=d„w„; a= lim —g(w„—w„w„4.t);
L L,

b = lim —g w„f4%„w„—w„~ i (w„+w„+ i ) ] +w„(w„- i + w„4. i ) +2w„~ i w„+2}.L- L„
The values of the coefficients m &, a, and b depend on the specific chain, but the high-frequency behavior of the ac con-
ductivity expressed by Eq. (12) is universal, in the sense that it is valid for any type of chain: random, deterministic
aperiodic, or periodic. Obviously, the asymptotic series makes sense only for those chains for which the coefficients ex-
ist, i.e., the appearance frequencies of the works occurring along the chain converge as L goes to infinity. Once the gen-
erating procedure is known, these frequencies can be calculated. For instance, in the Fibonacci case the resulting
coefficients are

re wg +dg wg 2 (wg —wg )
mi=,a=, b =a[2wit+(2 —I/r)w~].

A B A B
(i4)
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In the above relations, the distances d~ and dn are not
specified. The Fibonacci quasicrystal corresponds to
dg id+.

In conclusion, the influence of the aperiodicity of the
transition-rate distribution on the dynamic hopping con-
duction of one-dimensional systems has been investigat-
ed. We find that, for our model, the low-frequency con-
ductivity depends on the spectral measure of the se-
quence of transition rates on the chain. A sufficient con-
dition which determines a specific behavior is the follow-

ing: Any deterministic sequence whose second-order
fluctuation correlation is diagonal [see Eq. (11)] will

have a Lebesgue spectral measure and, consequently, a
randomlike behavior. This is the case of the Rudin-
Shapiro chain. The Thue-Morse sequence, described by
a purely singular continuous spectral measure, behaves
crystallike in the low-frequency limit. An intermediate
situation is revealed by the Fibonacci sequence: In the
limit ro 0, the imaginary part of the conductivity is

crystallike, while the real part is nonanalytic (-co into),
but different from the typical randomlike behavior
(-cu'i ). This frequency dependence is obtained here
for a discrete spectral measure but one expects that non-
trivial behaviors might result from the continuous part of
the spectral measures. Finally, the high-frequency
dependence of o(co) is shown to be independent of the

transition-rate distribution.
The authors are indebted to P. Gartner for useful dis-

cussions.
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