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We show that planar CuO; clusters with strong repulsive Coulomb interactions can exhibit an
effective attractive pairing interaction. This interaction arises from a disruption of the local lattice
charge distribution produced when a hole is added and occurs for a wide range of parameter values, in
the region where both the on-site Cu repulsion and the nearest-neighbor Cu-O repulsion are appreciable.
A signature of this mechanism is that the occupation of Cu sites decreases as the system is doped. We
suggest that this effective attractive interaction is responsible for high-7. superconductivity in oxides.

PACS numbers: 74.20.—z, 74.70.Vy

To make progress in the theoretical understanding of
high-T, superconductivity in oxides it is imperative to
identify unambiguously the dominant mechanism giving
rise to pairing. At present, calculations' of the electron-
phonon interaction in these materials suggest that pho-
nons alone cannot explain high-7, superconductivity.
This is also supported by isotope-effect measurements3:
As T, becomes higher, the isotope effect becomes small-
er, suggesting that another pairing mechanism, not in-
volving the ions, becomes dominant as 7. increases. This
leads one naturally to consider alternative pairing mech-
anisms involving interactions between electrons only.

Experimental observations of antiferromagnetism and
antiferromagnetic spin fluctuations in these systems*
suggest the existence of a large on-site repulsion energy
on the Cu d orbitals, U. Various mechanisms for super-
conductivity involving U in an essential way have been
proposed: singlet pair condensation,*® spin-fluctua-
tion-induced superconductivity,”® resonating valence
bonds,? strings,'® and spin bags,!' among others. How-
ever, recent numerical calculations'>'? suggest that a
Hubbard U by itself can give rise to antiferromagnetism
but not to superconductivity, at least in the simple two-
dimensional models and for the interesting temperature
regime.

Varma, Schmitt-Rink, and Abrahams'* have first sug-
gested that a nearest-neighbor repulsion V' between Cu
and O plays an important role in high-7, superconduc-
tivity. Their model stresses the importance of Cu-O
charge fluctuations, but does not involve U in an essential
way. A strong-coupling argument suggesting pairing in
the presence of large U and V, and calculations on one-
dimensional clusters, were discussed in Ref. 13. Here we
study the role of U and V in an extended Hubbard model
for two-dimensional CuO; clusters. We find that in the
presence of a strong on-site Cu U, a near-neighbor Cu-O
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repulsion V can give rise to an effective attractive in-
teraction between holes on the O sites of the cluster.
The addition of a hole produces a local reorganization of
the ion lattice charge distribution which requires a
significant energy. The tendency for pairing results from
the fact that it costs less energy to add a second hole in
the vicinity of the first, rather than to create the separate
local charge reorganization required for two isolated
holes.

Figure 1 shows two CuO; clusters that we will study.
If we take the vacuum state to be Cut 34'% and O 72
2p S, the nominally undoped state of a cluster can be con-
sidered as having one hole per Cu. With use of Cu
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FIG. 1. Two-dimensional CuO; lattice. The O atoms are
denoted by open circles, the Cu atoms by full circles. The re-
gions enclosed by dashed lines show the (a) nine-site and (b)
sixteen-site clusters studied by exact diagonalization, with the
occupation of the Cu atoms outside the clusters next to the
boundary taken into account in a mean-field way. The twelve-
site unit referred to in the text is (b) with the top (right) O
atoms being the same as the bottom (left) O atoms.
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dy2-,2- and O py,p,-like orbitals, an extended Hubbard
model describing the dynamics of holes for such a single
orbital per site lattice has the form

H=26,'J‘C,'I,Cja+ ;_ZUijCiLCiaCjL’Cja' (1)

with Cjl, the hole creation operator for Cu or O depend-
ing on the site index i. Here ¢;; includes on-site energies
€4 for Cu and ¢, for O, and a Cu-O hopping ¢, while Uj;
describes the on-site Coulomb energies U and U, of Cu
and O, respectively, and the intersite Cu-O Coulomb in-
teraction V. The point of view we take can be illustrated
by consideration of the cluster shown in Fig. 1(b). Sup-
pose the parameters are such that the first four holes go
largely onto the Cu sites where they are antiferromag-
netically coupled through a superexchange interaction.
Call the ground-state energy of this state E¢(4). Adding
one and then two additional holes, we compute the
ground-state energies Eo(5) and E(6), respectively.
Then a “binding energy” A is defined by

A=E(6)+Eo(4) —2E(5). 2

We will use A as a measure of the pairing interaction. !>
Clearly, the value of A depends on the size of the cluster.
Figure 2(a) shows the binding energy versus |U| for
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FIG. 2. (a) Binding energy for a pair of electrons added
onto a quarter-filled N-site one-dimensional attractive Hub-
bard model. The dashed line denotes the large-U limit for
N> 1. (b) Binding energy for a pair of electrons on a two-
dimensional lattice interacting through an attractive one-site
interaction U/t = —5.

different sized 1D lattices for a quarter-filled negative-U
Hubbard model. For a single site (N=1), A=|U]|,
while for N— oo, A is the binding energy of a pair. The
results shown in Fig. 2(a), obtained by exact diagonali-
zation, show a smooth transition as N increases. For a
2D lattice, with two particles interacting through an at-

tractive on-site interaction — |U | n;1n;|, the binding en-
ergy is given by
|U| =N, 20 +4)+ [A]17! (3)

with e, =2t(cosky +cosk,). Taking a bandwidth 8¢ of
order an electronvolt and a binding energy for the N
— oo lattice appropriate to the oxide superconductors
gives |U |/t =5. Figure 2(b) shows the binding energy
|A| versus the linear lattice size N. Just as for the 1D
case, the binding energy evolves smoothly towards the
infinite-lattice limit. As A is the zero-frequency limit of
the effective interaction, A > 0 in a cluster could still give
rise to superconductivity in the infinite system through
retardation effects. Indeed, as our cluster size increases
we find that the conditions on the parameters to obtain
A <0 become less stringent.

We now consider the nine-site cluster shown in Fig.
1(a). We diagonalize the Hamiltonian Eq. (1) exactly
for this unit for n =2, 3, and 4 holes and obtain the
ground-state energy E(n) in each sector. The binding
energy A for this unit is then given by A=E(2) +E(4)
—2E(3). We take free-end boundary conditions, but in
order to simulate the outside environment we take for
€, on the O atoms next to the boundary épbound =¢€p

+V{n.). Here (n.) is found from a separate calcula-
tion for a twelve-site lattice with four holes and periodic
boundary conditions [Fig. 1(b)]. We believe that this
value of {(n.,) should be very close to that of the infinite
system near the half-filled-band case. This is based on
the fact that numerical simulations on twelve- and 48-
site lattices with U only show very little change of (n.,)
with lattice size.'?

Results for A obtained from the nine-site cluster of
Fig. 1(a) are shown for a range of parameters in Figs.
3(a)-3(d), versus the on-site Cu interaction U for
several values of the on-site O interaction U, and four
different Cu-O interactions V=0, 2, 4, and 6. For
V' Z 4, A becomes negative for large U. Note that in this
region, A is relatively insensitive to U,. Examination of
ground-state expectation values shows that for small U,
pairing occurs on the center O site in Fig. 1(a): The ex-
pectation value {nn ;) —<{n;)n) is positive for four holes
in the cluster when A <0. This suggests that the result-
ing superconducting state will be s-wave like. As U, in-
creases, double occupation of O sites decreases and pair-
ing occurs increasingly between holes on neighboring O
sites. We have studied the dependence of A on the rela-
tive difference between O and Cu single-particle energies
€=¢€, — €4 and found that the largest binding occurs for
e=0 for a wide range of parameters. This zero value

1669



VOLUME 60, NUMBER 16

PHYSICAL REVIEW LETTERS

18 APRIL 1988

FIG. 3. Binding energy for a pair of holes added on the
nine-site CuO; cluster [Fig. 1(a)] with two holes. =1, ¢=0.
(a) V=0, (b) V=2, (c) V=4, (d) V=6.

was used for the results shown in Fig. 3. We have also
examined the effect of a direct O-O hopping and found
that it enhances pairing up to a value around ¢/3 and
then suppresses it.

Similar calculations of A were carried out for the
sixteen-site cluster shown in Fig. 1(b) with use of a
Lanczos method. Here too the single-particle energies of
the outer oxygens are given by €ppound. Figure 4 shows
results for A vs U with ¢, —€; =0 and U, =8, V'=4. For
this larger cluster, A is reduced in magnitude as expect-
ed, but shows a similar behavior to that found on the
nine-site cluster. Once again, we see the important role
of U. Variations with the other parameters were similar
to those shown in Fig. 3 for the nine-site cluster, except
that in all cases the condition for negative A was found
to be less stringent for the larger cluster.

A common feature found in all the cases where A was
negative was that the occupation of Cu sites was reduced
rather than increased as the cluster was doped. For ex-
ample, for U=10, U, =8, ¢=0, V' =4, the average Cu
occupation in the nine-site cluster was 0.69, 0.50, and
0.31 hole for 2, 3, and 4 holes in the cluster. This
feature, which only occurs in the presence of large U and
V, appears to be the key necessary element to obtain a
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FIG. 4. Binding energy for a pair of holes added on the
sixteen-site CuO; cluster [Fig. 1(b)] with four holes. =1,
€=0, V=4,U,=8.

negative A.

Calculations for a periodic twelve-site CuO; cluster in
the undoped state (one hole per Cu) show antiferromag-
netic correlations, persisting in the region where addi-
tional added O holes bind. Figure 5(a) shows the bind-
ing energy, and in Fig. 5(b) we plot the nearest-neighbor
and next-nearest-neighbor equal-time spin-spin correla-
tions versus V for U=10, U, =8, and ¢, —¢; =0. Note
that antiferromagnetic correlations in the undoped
(half-filled) case persist unchanged for the parameter
range in which the doped system exhibits a negative
value for A.

Our calculations suggest that the model discussed
here, which shares many of the features of high-7, ox-
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FIG. 5. (a) Binding energy for a pair of holes on the nine-
site cluster vs V, for U=10, U, =8, ¢=0. (b) Nearest- (c102)
and next-nearest-neighbor (o103 spin-spin correlations for a
twelve-site cluster with periodic boundary conditions; same pa-
rameters as (a).
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ides, is perhaps the simplest two-dimensional model with
short-range repulsive interactions that will exhibit high-
temperature superconductivity.'®!” Our cluster calcula-
tions showed that pairs of holes moving on the O sites in
the presence of strong on-site and intersite Coulomb in-
teractions bind. In the same parameter regime, the
half-filled system exhibits strong antiferromagnetic cor-
relations, suggesting that antiferromagnetism at half-
filling and superconductivity away from half-filling can
be manifestations of the same underlying interactions.
We have also calculated the energy to add three holes to
the undoped (1 hole/Cu) clusters and find that the pair
and a separate hole state are energetically favored. As
the system is doped away from half-filling we expect the
antiferromagnetic correlations to be rapidly suppressed;
in our cluster calculations, the staggered magnetization
dropped rapidly as holes were added, and this was also
found in Monte Carlo simulations with U only'3; at the
same time, we expect T, to increase as the number of
carriers (O holes) increases, as the pairing mechanism
discussed here is local, not dependent on extended anti-
ferromagnetic correlations. Furthermore, as discussed
above, the proportion of Cu™ relative to Cut™ should
increase rather than decrease as the system is doped with
holes if the parameters are such that A is negative; obser-
vation of this effect would provide strong support for the
mechanism discussed here.
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Note added— After submission of this paper we re-
ceived a preprint of C. Balseiro et al. '® who independent-
ly discuss a very similar mechanism.
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