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Geometrical Phases from Global Gauge Invariance of Nonlinear Classical Field Theories
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We show that the geometrical phases recently discovered in quantum mechanics also occur naturally
in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a
Lagrangean which is invariant under gauge transformations of the first kind. Some examples are the
paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parame-
ters in condensed-matter physics.

PACS numbers: 03.65.Bz, 11.15.Kc, 42.65.Jx

In the past few years, a great deal of work has been
done on applying and generalizing the concept of geo-
metrical phases. This notion was first introduced by Ber-
ry' in the context of the adiabatic approximation in

quantum mechanics, but it was clearly recognized from
the beginning that the ideas involved were applicable to
any linear wave theory. Its first experimental confirma-
tion was the observation by Tomita and Chiao of geo-
metrically induced optical activity. Its mathematical
structure was elucidated by Simon. The theory was
generalized to the non-Abelian case by Wilczek and
Zee, ~ and the restriction to the adiabatic approximation
was removed by Aharonov and Anandan. ' In all of this
work the fact that the Schrodinger time-evolution opera-
tor is a linear isometry (i.e., is unitary) was used. Our
objective in the present Letter is to show that linearity is
not necessary. We do this by exhibiting a large class of
nonlinear evolution equations which possess a geometri-
cal phase. To this end, we study complex multicom-
ponent classical fields. For the sake of clarity we will

only consider fields y-col(yt, . . . , y„), yt (yt*, . . . ,
y„), described by a Lagrangean density of the form

By&-t y' — y +& (V'y Vy'. Vy).
Bt Bt

We assume that the Lagrangean (1) is real and that it is
invariant under gauge transformations of the first kind,

y(x, t)~ exp(ict)y(x, t), with constant a. The assump-
tion that the Lagrangean density is linear in the time
derivatives is not necessary, and a more general discus-
sion will be given elsewhere. It is the condition of global
gauge invariance which is really essential to the follow-

ing argument. The field equations derived from (1) can
be written as

i By/Bt -G (yt, y, Vyt, Vy),

and the global gauge invariance of X implies that G
satisfies the homogeneity condition

G(e ' yte' ye ' Vyte Vy)

-e"G(y y, Vy, Vy) (3).
In the case of quantum mechanics, G Hy, where H is
the Hamiltonian. The global gauge invariance of the
Lagrangean also implies, by Noether's theorem, the ex-
istence of a conserved four-current density (p, j). The
assumption (1) for the Lagrangean gives the sitnple ex-
pression p lIIl~y for the "charge density, " but the ex-
plicit form of j cannot be obtained without specification
of Xt. The continuity equation for (p, j) immediately
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yields a conservation law for the total charge Q:

dv p = — dv V. j = — da" j =0,
dt 4 Bt 4 (4)

where f is the time derivative of f. Let (y, g) denote the
inner product in P; then forming the inner product of fr
with (5) yields

where the first integral extends over the configuration
space appropriate to the problem and the last integral
extends over the boundary. If the configuration space is
finite, the last equality is a consequence of the boundary
conditions on the field, but if the configuration space is
unbounded, the finiteness of Q means that the field is

square integrable (L2). Since any physically reasonable
field can be approximated by an L2 field, we will restrict
our attention to L2 fields. The last equality then follows
from the vanishing of the field at spatial infinity. The set
of all such fields forms a Hilbert space P with Q as the
norm, and the conservation law (4) shows that the evolu-
tion generated by 6 preserves this norm, i.e., the evolu-
tion is an isometry. The physical meaning of this fact
depends on the theory in question; the interpretation of
(4) as conservation of probability is peculiar to quantum
mechanics. The vector properties of P play no particu-
lar role when G is nonlinear; in particular the inner prod-
uct of two distinct vectors is not generally conserved.

The combination of the homogeneity property (3) and
the isometry property (4) is sufficient to allow us to re-
peat mutatis mutandis the argument of Aharonov and
Anandan demonstrating the existence of a geometrical
phase associated with any cyclic evolution. For the sake
of completeness, we give our version of their argument
here. We first define a cyclic vector for the evolution law
G as a field, y(x, 0), for which there is a time T and a
phase + such that y(x, T) =exp(i@)y(x,0) In qu. an-
tum mechanics, the existence of cyclic vectors is assured;
they are the eigenvectors of the unitary evolution op-
erator U(O, T), and the corresponding eigenvalue is

exp(i@). In the nonlinear case, no such general argu-
ment is available. A cyclic vector corresponds to a solu-
tion in which the spatial form is periodically replicated
up to a phase, e.g. , a soliton. The cyclic vector can be
converted to a periodic form by the introduction of the
modified field y(x, t) =exp[ —if(t)]y(x, t), where f(t)
is any smooth function satisfying f(T) —f(0) =@, so
that y(x, T) =fr(x, 0). Since G does not involve any
time derivatives, the homogeneity property (3) yields the
modified field equation

t'Bf/Bt =fW+G(P', w, VP', VP),

(P, i By/Bt) =f(P,P )+ (y, G), (6)

where G =G(P, . . . ). The definition of Q and the homo-
geneity property (3) show that (yr, yr) = (y, y) =Q, and

(P, G) =(y, G). Integration of (6) over the interval
(O, T) then gives the central result of this paper, @
=8+ y, where the dynamical phase 8 and the geometri
cal phase y are given by

4 0

y= — dt itr, i
I ' . Bfr
Q40 Bt

The phase 8 is called dynamical because it depends ex-
plicitly on the form of G. To understand the geometrical
nature of y, we first remark that the cyclic evolution de-
scribes a curve, t y(t), in iV that begins and ends on
the same ray, where a ray is the set of all constant multi-
ples of some chosen vector. The set of all rays consti-
tutes the projective space P(P), and the curve in P in-
duces a closed curve C in P(P). The geometry of this
projective space has been discussed by Zumino. Ac-
cording to Aharonov and Anandan, s

y depends only on
C. Their argument also works in our case. Consider an
alternative field equation described by the function G '

with solution y', period T', and phase shift @'. Since G
and G' are both isometrics and the evolutions start at the
same ray, the value of the norm Q is the same for both.
Now suppose that the two evolutions give the same curve
C in P(P); then for any time t C (O, T) there is a time
t' E (O, T') such that the vectors y(t) and y'(t') lie on
the same ray. In fact, the two vectors can differ only by
a phase factor, because of the equality of their norms.
The same is obviously true for the modified fields y(t )
and P'(t ') so that there is a function h (t ') satisfying

P '(t ') =exp[ih(t ')]fr(t), and h(T') =h(0)+2zn, where
n is an integer and the last equality follows from the
periodicity of the modified fields. We next calculate y'

by using the primed version of (g) and the relation be-
tween the two fields to obtain

y'= — dt' exp[ih(t')]yr(t), i [exp[ih(t')]P(t)} =— dt'i —(yr(t), P(t)) + y(t), i . (9)
I ~T', . , B . , I 'T', dh . BP(t)
Q&0 ' at' Q" 0 dt' Bt'

Since (y, y) (y, y) =Q is a constant, the periodicity of h(t') [mod2rr] guarantees that the first term will contribute
the phase ( —2'), and the identity dt'(B/Bt') =dt(B/Bt) shows that the second term is just y. Thus y'=y 2rtn and-
the geometrical phase depends only on the curve C [mod 2m]. Thus it is the same for a large equivalence class of evolu-
tions [G} which generate the same closed curve C in P(/f).

As an example, we consider the propagation of an intense, elliptically polarized light wave in a Kerr-active medium.
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The electric field can be expressed as E=Re[C(x, t)
xexp[i(kz —cot)]], where C(x, t) is a slowly varying
complex amplitude, which is transverse. In terms of the
variables z and xT=(x,y), the paraxial wave equation
for 4 can be written as

. 8C
1

az
VTC —Gpf(C C)C*+ 3 (4* C)C},

(io)

where Gp=3kn2/Snp, and np and n2 are respectively the
linear and second-order indices of refraction. Thus the
longitudinal variable z will play the role of time. (Note
that since Maxwell's equations are first order in time, the
paraxial approximation is unessential. ) The paraxial
wave equation (10) can be derived from a gauge-
invariant Lagrangean satisfying (1), so that the complex
vector 8 is an example of the complex n-component field

of the general discussion. It is formally identical to a
Ginzburg-Landau equation for a vector complex order
parameter of an isotropic medium. In order to simplify
the explicit calculation further we impose the plane-wave
approximation, i.e., we ignore diff'raction eA'ects. In this
limit there is no dependence on xT and the Hilbert space
P reduces to the space 8 of complex, two-component
vectors. If an elliptically polarized wave with eccentrici-
ty e is injected into the medium, the initial field can be
written as 8(0) =Epcol(l, ie). The solution of (10) is
then'

4rt(1 —e +e )
31~1(I+") ' (i 2)

where we have used the values of A and I given above
and also the expressions

l C(z) C(z) l

=
l
C(0).C(0)

l
=Ep(1 —f ),

l4*(z) C(z)]'=Q'=Ep(1+a')'
which are easily derived from the explicit solution (11).
We have shown above that the geometrical phase de-
pends only on the closed curve C in the projective space
P(P). Here P(P) =P~(C), since /f=C, and is the

C(z) =exp(ixz)R(I z)4'(0),

where R(rt) is the matrix representing a rotation around
the z axis through the angle rt and the constants x and I
are given by ~ 4GpEp(l+e )/3, and I = —2GpEpe.
Thus the field rotates at a uniform rate and acquires a
uniformly increasing phase shift. This self-induced pre-
cession of the polarization ellipse has been observed.
The solution returns to the ray containing C(0) after a
period A-2'/l I l, and the total phase shift @ is given

by 4=2tttr/l I l. The nonlinear function G is defined by
(10), and (7) then gives the dynamical phase 8 as

where V is a two-form related to the matrix M and cr(C)
is any surface bounded by C." The factor of 2 in (13)
comes from the double circumnavigation of the Poincare
sphere. This phase is closely related to that first derived

by Pancharatnam' for a sequence of discrete polariza-
tion-changing linear optical elements which cause the
polarization to undergo a cyclic evolution on the Poin-
care sphere. However, it differs from the phase of Chiao
and Wu ' for spinning photons whose direction is

changed cyclically. In our case, the result of this calcu-
lation is

y =sgn(e) 0 (C) = (mod 2tr),
1+a

(i4)

where Q(C) is the solid angle subtended by C. The total
phase shift is

2+x 4z 1+t.

which is indeed the sum of (12) and (14).
In quantum mechanics, the dynamical phase 8 is well

understood: It is simply the time integral of the expecta-
tion value of the Hamiltonian. The meaning of 8 is not
so clear in the nonlinear case, and so it is of some in-
terest to suggest an experiment which allows 6 to be
measured. For this purpose, let the elliptically polarized
beam of our example be split, with one beam going
through the nonlinear Kerr-active medium and the other
through a linear medium in which there are suitably
oriented static electric and magnetic fields. Berry has
shown that this latter arrangement can be used to create
a linear optical medium which is both gyrotropic and
birefringent. " For a medium which is solely gyrotropic,
i.e., optically active, the eigenpolarizations are circular-
polarization states of opposite senses. For a medium
which is solely birefringent, the eigenpolarizations are
orthogonal linear-polarization states. When one com-
bines both gyrotropy and birefringence in the same
medium, the eigenpolarizations are elliptical-polarization
states, in general. By slowly rotating the axis of the

familiar Poincare sphere used in the description of polar-
ization states. ' The natural coordinates for P(P) are
the polar angle 0 and the azimuthal angle p, and the
closed curve C corresponding to the solution (11) is sim-

ply a circle at constant latitude, 8=00, where 00 is relat-
ed to the eccentricity e by cosOp= —2e/(I+a ). One
period of the solution (11) corresponds to circumnaviga-
tion of the Poincare sphere t~ice along this circle. Thus
the polarization ellipse processes uniformly with no

change in ellipticity. The coordinates on the Poincare
sphere are defined by the construction of a 2X 2 Hermi-
tean matrix M which has 4 (z ) as an eigenvector with
unit eigenvalue. An application of Stoke's theorem al-
lows the line integral to be evaluated as

(i3)
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birefringence, e.g., by slowly rotating a static electric
field applied to the Kerr medium around the direction of
propagation of the light, one can force the semimajor
axis of the polarization ellipse to corotate with the
birefringence axis. Thus the orientation and strength of
the fields can be chosen so that the polarization ellipse
rotates in the same way in both arms, i.e., the curve
traversed on the Poincare spheres will be identical for
both linear and nonlinear evolutions. According to the
argument given above, the geometrical phase shift will

be the same in both arms, but the dynamical phase
shifts, which depend on the details of the dynamics, will

differ. Thus recombination of the two beams will result
in an interference pattern with a fringe shift depending
on the difference in the dynamical phases. In other
words, the dynamical phase for the nonlinear system can
be measured relative to that of a properly chosen linear
system. Since the total phase @ is a physical observable,
and the dynamical phase 6 is a physical observable, one
infers that their difference, the geometrical phase y, is
also a physical observable.

We conclude with some remarks on possible directions
for future work. The restriction (I) on the form of the
Lagrangean can be lifted at the expense of some formal
complications in the theory, but the restriction to classi-
cal fields is a more difficult matter. Since some of the
theories covered by our results are correspondence-
principle limits of quantum field theories, e.g., quantum
optics, the possibility of generalizing these considerations
to quantized field theories is of great interest. A second
important point arises from the fact that the line integral
defining the geometrical phase y is left invariant when
the integrand is changed by the addition of the gradient
[with respect to the coordinates of P(/f)] of any scalar
function. Thus gauge invariance of the first kind for
fields defined on ordinary space-time induces gauge in-
variance of the second kind in the projective space
P(/f). This constitutes a novel connection between the

global gauge principle and the local gauge principle in

different spaces. This remark holds for quantum me-
chanics as well as the classical field theories considered
above. Therefore investigation of its significance should
be of general interest.
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