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Wave Propagation in k Space and the Linear Ion-Cyclotron Echo
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When a magnetosonic wave packet crosses the second-harmonic gyroresonance layer, it linearly ex-
cites an ion-pressure-anisotropy wave packet, which propagates only in k space. The latter wave in turn
excites a second magnetosonic wave packet which appears as a time-delayed reAection from the reso-
nance layer. We call this phenomenon a linear ion-cyclotron echo.

PACS numbers: 52.35.Hr, 03.40.Kf, 52.40.Db, 52.50.Gj

Although the Hamiltonian equations of ray optics de-
scribe orbits in (six-dimensional) ray phase space (x,k),
it has been traditional to think of the waves they repre-
sent as propagating in (three-dimensional) physical x
space. In this Letter, we discuss a wave which propa-
gates only in k space, and which remains localized in x
space. Its linear conversion' with conventional magneto-
sonic waves gives rise to a new phenomenon, the linear
ion cyclotr-on echo, whose physical origin is quite difer-
ent from the intrinsically nonlinear cyclotron echo stud-
ied earlier.

The wave in question is an ion-pressure-anisotropy
(IPA) wave, recently discovered by Friedland. For a
slab geometry with B=Bo(x)i, and with perpendicular
wave vector k, its dispersion relation is ro(k, x) 2Q(x)
+O(k ) (with 0:—eBo/ttt;c), in the limit of k 0. (It
is thus the k 0 limit of an ion Bernstein mode. ) The
ray equations thus read dx/dt = t)to/r)k =0, dk/dt
= —t)ro/|)x = —20'x (0'=d 0/dx). Thus a wave pack-
et remains stationary in x space, while in k space it prop-

agates as k„=—20'.
One of the proposed methods for the heating of a

confined plasma is to launch an incident magnetosonic
wave [Figs. 1(a) and 2(a)l across the magnetic field.
[For k=k„x, the magnetosonic dispersion relation is
co =k„c~(x), with c~=BII/4trp .] For a continuous
wave with frequency coo, the incident magnetosonic wave
has k„(x) too/c~ (x). When this wave crosses the
second-harmonic gyroresonance layer at xtt, where
20(xtt) coo, it converts part of its energy to the IPA
wave. That wave [Figs. 1(c) and 2(c)] then propagates
in k space, until it crosses the curve k„(x)= —too/c~(x)
representing the re+ected magnetosonic wave. The IPA
wave there converts a fraction of its energy to the
reflected wave [Figs. 1(d) and 2(d)], and proceeds [Figs.
1(e) and 2(e)] to larger

~ k„~. (When k„becomes ap-
preciable for the IPA wave, it propagates in x space, and
eventually damps by kinetic processes. )

In this Letter, motivated by the desire to understand
this process, we consider an incident wave packet. It is
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FIG. 1. Schematic diagram, in phase space, of mode-
conversion process: (a) incident magnetosonic wave packet ap-
proaching mode-conversion point I; (b) transmitted magneto-
sonic wave packet; (c) ion-pressure-anisotropy wave packet
between the two mode-conversion points; (d) reflected magne-
tosonic wave packet leaving mode-conversion point II; (e) ion-
Bernstein wave packet leaving the mode-conversion point II.

FIG. 2. Schematic diagram, in space-time, of wave packets
of the electric field: (a) incident magnetosonic wave packet at
t & 0; (b) transmitted magnetosonic wave packet at 0 & t & At;
(c) wave packet of electric field associated with ion-pressure
anisotropy at 0 & t & At; (d) refiected magnetosonic wave
packet at t & At; (e) ion-Bernstein wave packet at t & At; (f)
transmitted magnetosonic wave packet at t & h, t.
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evident from Fig. 1 that, if the wave packet is sufficiently
localized in phase space, then there is a ftnite time inter-
val h, t between the crossing of the resonance layer by the
incident wave and the subsequent emission of the
reflected wave. (We call this phenomenon the linear
ion cyc-lotron echo.) Since the separation of the two
linear conversions is hk„=2cop/c~, the time interval is
ht =5k„/~k„~ =20/c&0'. We have qualitatively ver-
ified this echo phenomenon by computer simulation.

We proceed to an analytic solution of this problem.
By a kinetic analysis, we derive coupled equations for
the ion-pressure anisotropy p=p,~(x,t) and the magnet-

b(x, t) =bpexp[ —(x —cgt) /2cr ]exp[ —icop(t —x/cg)].

ic field perturbation b =b—B„(x,t):

[co —20(x)]p(x, t) =ab(x, t),

[co' k—„'c~2]b(x,t) =Pp(x, t) (2)

The coupling constants a,P need not be specified in the
present discussion. In (1) and (2), to=i8/Bt and k„

i8—/Bx (W. e may treat cz as constant in the reso-
nance region. )

In the present Letter, we solve these equations itera-
tively, for the case of weak coupling (a,P small). On the
right-hand side of (1), we take the incident magnetoson-
ic wave packet, of width cr, as

(3)

We choose the x origin at the resonance layer for the wave frequency cop, i.e., top=20(x =0) and 0(x) top/2+x0'.
Thus the wave packet crosses the resonance layer at t =0 (see Figs. 1 and 2).

Since Eq. (1) is a first-order ordinary differential equation in time, it is easily solved. After the wave packet has
crossed the resonance layer, we have, for the IPA wave,

p(x, t) ppexp[ —2a 0' x /cg —i20(x)(t —x/c~)], (4)

a wave packet whose envelope is not propagating in x space. On taking the Fourier transform of (4), we find (with

kp = top/cA )

p(k„, t) =p~ exp[ —[k„—(kp —20't)] c~/8cr 0' jexp( itopt), — (5)

Equation (2) then reads, in k„space,

2top(i8/ jt +k„cg )b(k, t ) =Pp(k, t ).

a pulse centered at k„=kp —20't, i.e., propagating with
k„=—20'. [To simplify the result (5), we have as- the reflected wave, by
sumed o »Lp/kp, where L p is the magnetic scale length
Lp 0/0 '. ] to —k„cg =(to+k cg)(to —k,cg)

The validity condition for our model is that the two
linear conversion events are disjoint. This requires that
the width, dk =2cr0'/c~, in k„space of the IPA is small

compared to the separation 2kp of the two crossings.
This simply requires cr((Lp, and is easily satisfied. (7)

Since the incident and reflected magnetosonic waves
are thus well separated in phase space, we can approxi- Again we have a first-order ordinary differential equa-
mate the second-order differential operator in (2), for tion in time; we substitute (5) into (7), and obtain (after

the IPA wave has passed the crossing)

b(x, t) b(exp[ —[x+cg(t at)] /2cr—[exp[ itop(t+x—/cg)] (8)
Thus, as expected, the reflected magnetosonic wave packet leaves the resonance layer (x =0) at t h, t.

In connection with the practical application to plasma heating, we have generalized this model in two directions.
First, we allow for finite k„ then we must replace the full ion-pressure-anisotropy moment p„~(x,t) by the hybrid mo-
ment

p„~(v„;x,z, t) =„& dv„dv~(v„—u„)(v~ —u~)f(v„, vy, v, ;x,z, t),

which is partially kinetic. The operator on the left-hand side of (1) becomes co —20(x) —k, v„so that in the weak-

coupling limit, the IPA wave is replaced by a van Kampen-type mode representing gyroresonance guiding centers:

p„~(v, ;x,z, t)-h[to —20(x) —k, v, ]exp[i(k, z —cot)] (10)

Since the dispersion relation is now co =20(x)+k, v„ the propagation of k„ is unchanged; dk„/dt = —20, and so the
time delay ht for the echo is likewise unchanged.

Secondly, we allow the coupling to be strong. The coupled equations can still be solved to obtain self-consistent
transmission and reflection coefficients. The portion of the absorption which resides in the collective ion-Bernstein mode
is found by a projection technique. The results satisfy an energy conservation law.
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It should be relatively straightforward to extend this
idea further to general geometry. Work along this line
will be reported later.

We are indebted to Lazar Friedland for his deep in-

sight into mode conversion and kinetic modes, to C. K.
Birdsall for providing the techniques and help on the
computer simulation we used to verify the analysis, and
to A. Bers and V. Fuchs for introducing us to the phase-
space analysis of magnetosonic and ion-Bernstein waves.
This work was supported by the U.S. Department of En-

ergy under Contract No. DE-AC03-76SF00098.
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