
VOLU M E 60, NUM BER 16 PHYSICAL REVIEW LETTERS 18 APRIL 1988

QCD Predictions for the Decay of the z Lepton
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The semileptonic decay rate of a heavy lepton is shown to be rigorously calculable by use of perturba-
tive QCD. Even the r lepton is heavy enough for the perturbative approximation to be accurate. The
prediction for the ratio R =I (r v, +hadrons)/I (r v, +e +v, ) is 3.29, with an uncertainty of
about 1% due to the uncertainty in the A parameter of QCD. Nonperturbative corrections to this pre-
diction are estimated to be on the order of 1%. More importantly, these corrections are shown to be neg-
ative because of a fortuitous cancellation of the leading contribution from the gluon condensate. The re-
sulting prediction is significantly smaller than the present experimental result R 3.65 ~ 0.13.

PACS numbers: 13.35.+s, 12.38.Bx

The ratio R(e+e ) =o(e+e hadrons)/a(e+e
p+p ) played an instrumental role in the develop-

ment of QCD, because it provides evidence for color.
Provided that the number of colors is N, =3, a naive cal-
culation of the cross section for producing quark-anti-
quark pairs gives a reasonable estimate for R(e+e ),
unless the center-of-mass energy is close to a resonance.
Corrections to R(e+e ) can be calculated systematical-
ly in perturbative QCD.

A corresponding ratio can be defined for decays of the
r lepton:

R= I (r v, +hadrons)
(1)

I (r v+e +v )
It is not well appreciated that this ratio also provides evi-

dence for color. ' A naive calculation of the decay rate of
the r into v, +du and v, +stt gives R N„where
N, =3 is the number of colors. This seems to be in
reasonable agreement with the present experimental re-
sult R 3.65+ 0.13. As will be shown in this Letter,
corrections to the naive prediction for R for a heavy lep-
ton can be calculated reliably by use of perturbative
QCD. The integration over the energy of the neutrino
makes the prediction insensitive to the effects of reso-
nances and branch cuts. Nonperturbative corrections
are shown to be negative because of the cancellation of
the leading contribution from the gluon condensate. The
resulting prediction for R is significantly smaller than
the present experimental result.

Let me begin by expressing the ratio R as an integral
over the invariant mass s of the hadrons:

2 "st' ds sR=— 1—
M M

1+2 ImIIT(s+ ie) —ImIIL (s+i e)
M

(2)
j

where M is the mass of the heavy lepton. IIT(s) and IIL(s) are the transverse and longitudinal parts of the self-energy
function of the W boson, with an overall factor of e /96tr sin Htv removed for convenience. Their imaginary parts are
proportional to their discontinuities across the positive real s axis, and therefore (2) can be expressed as an integral over
a contour running from s =M —ie to s =0 below the real axis and then back to s =M +ie above the axis. Since IIT
and IIL are analytic except on the positive real axis, this can be deformed into a contour which runs clockwise around
the circle C of the radius t s

t
=M:

R= — 1—1 ds
g~~ c M2

1+2 IIT(s) —IIL(s)
M

If M is sufficiently large, perturbative QCD can be used
to calculate IIT(s) and IIL(s) for s near —M . The an-
alytic continuations of these functions can then be used
to approximate the integrand of (3) at the other points
on the circle C. This method was in fact used by Lam
and Yan to predict the semileptonic decay rate of the i
lepton even before its discovery, and updated predictions
have been given by Schilcher and Tran.

The first contribution of this Letter is the observation
that the perturbative prediction for R is in fact much
more reliable than one might at first expect. The weak-

t

est point in the calculation seems to be that it uses the
analytic continuations of the perturbative approxima-
tions to HT and HL even near the positive real s axis,
where these functions have poles and branch cuts that
cannot be described accurately by use of perturbative
QCD. Fortunately, the integrand of (3) includes the
factor (1 —s/M ), which provides a double zero at
s =M, effectively suppressing the contribution from the
region near the branch cut. Even a pole due to a reso-
nance would not contribute significantly to the integral.
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This perturbative QCD prediction for the ratio R for a
lepton of mass M will therefore be much more reliable
than the calculation of R(e+e ) at the center-of-mass
energy M. The ratio R (e +e ) is proportional to
ImII(M +ie), where II(s) is the photon self-energy
function which can be calculated by use of perturbative
QCD for s large and far from the positive real axis. To
calculate R(e+e ), the perturbative approximation to
II(s) must be analytically continued to s M~. Pertur-
bative QCD can tell us nothing about the accuracy of
this analytic continuation. Indeed it is known to give a
poor approximation if there are nearby resonances. In
contrast, the calculation of the ratio R for a heavy lepton
is insensitive to the accuracy of the analytic continuation

near the positive real axis because of the suppression fac-
tor at s =M . Thus the perturbative QCD prediction for
the ratio R for the ~ lepton should be much more accu-
rate than the prediction for R(e+e ) at center-of-mass
energies near M, .

To calculate the perturbative prediction for R using
(3), we require analytic expressions for the perturbative
approximations to the 8' boson self-energy functions.
The renormalization-group equations can be used to ex-
pand the perturbative approximations to IIT and Hi in

inverse powers of X =ln( —s/A ), where A =150-t 50
MeV is the QCD scale parameter in the modified
minimal-subtraction (MS) scheme. If we include all
terms of order a, and neglect quark masses, the resulting
expressions are

IIP"(s) 3 8 —X — ink+2 4EC 1

pp pp2 x
4Pi ink+1 ~p„( )
pp3

(4)

where pp (33 —2nf)/6 and pi =(153—19nf)/12 are the first two coefficients of the QCD p function, K=1.986
—0.115nf is the coefficient of the order-a, correction to R(e+e ), nf is the number of light quarks, and A is a con-
stant whose value is not relevant to the present analysis.

Since the perturbative approximations given in (4) are analytic functions of s except along the positive real axis, the
simplest way to evaluate the contour integral (3) is to collapse the contour down around the positive real s axis. The re-
sulting integral is identical to (2), except that ImIIL 0 and ImIIT is replaced by

ImIIP" (s+ ie) 3n 1+ arctan —+2 z 4' 1

&pp ~ pp k+n
4pi ln(12+m )+ I —(X/n)arctan(n/X)
p3 A, +z

(5)

I do not claim that (5) gives a good approximation to the
integrand of (2), but only that it gives a good approxi-
mation to the integral, provided that M is large enough
to allow a perturbation expansion in a, (M).

In the case of the ~ lepton whose mass is M, 1784
MeV, the resulting prediction for the ratio R is

R ~"=3.29+ 0.04, (6)

where the error is due to the uncertainty in A. The
corrections of order a, and a, to the naive prediction
R 3 are 0.33 and —0.04, respectively, and so the per-
turbation expansion is well behaved. The perturbative
prediction (6) differs by three standard deviations from
the present experimental value for this ratio, which is

R 3.65 ~0.13. This value is obtained by the insertion
of 8, =(17.7~0.4)%, the present world average for the
branching fraction of the r into electrons, into the for-
mula R =(1—28, )/8, .

If there are any other sequential leptons heavier than
the r, perturbative QCD should provide very accurate
predictions for their semileptonic decay rates. However,
the mass of the r lepton is sufficiently small that one
should also consider the effects of nonperturbative
corrections. For large negative s, the functions IIT(s)
and IIL, (s) can be expanded with the operator product
expansion. The leading non perturbative corrections
arise from the lowest-dimension operators which can de-
velop nonzero vacuum expectation values. For the func-
tions IIT and IIL, the leading corrections are

IP

„,„~„() 3
x s(GG) 1 1+ 7 1 256m

( )
1 1+ 9 1

3 n g 3pp X 81 g 4pp A,

(7)

III"'"i""(s)=3 —8n'm( yy)
1

where m (m„+0.95md+0. 05m, )/2 is a weighted average of quark masses. I have included the order-a, corrections
to the coefficient functions for the gluon condensate and the four-quark condensate, 9 and I have ignored the small
anomalous dimension of the latter. The condensate values are (a,/n)(GG) (330 MeV), a, (yyyy) (240 MeV),
and m(yy) —(110MeV), with uncertainties of about a factor of 2.

Since the lowest-order terms of the coefficient functions appearing in (7) are analytic functions, their contributions to
the integral (3) can be evaluated with use of Cauchy's residue theorem. This reveals that the only such terms that can

1607



VOLUME 60, NUMBER 16 PHYSICAL REVIEW LETTERS 18 ApRIL 1988

contribute to R are the I/s and I/s terms in IIr and the I/s and I/s terms in IIi, . In particular there is no leading-
order contribution from the gluon condensate, since it contributes only to Ilr and its coefficient function is proportional
to 1/s . This fortuitous cancellation decreases the contribution from the gluon condensate by an order of magnitude.
Its first contribution arises from the order-a, correction to its coefficient function given in (7), which when expressed in

analytic form contains the factor 1/ln( —s/M ). The leading nonperturbative contributions to R for the r lepton are
found to be

R "'"Ar =0.002 —0.015 —0.013
(a, z)(GG) a, (pygmy)

(330 MeV) (240 MeV) (110MeV)
(8)

Taking into account the factor-of-2 uncertainties in the values of the condensates, we obtain the estimate R"'"~"
= —0.03 —003. These nonperturbative contributions are small, but more importantly, they are negative. This sign is a
consequence of the strong suppression of the contribution from the gluon condensate and it is therefore insensitive to the
precise values of the condensate parameters. Thus the nonperturbative corrections can only decrease the perturbative
prediction (6). This would increase the discrepancy with the experimental value obtained from the measured branching
fraction B,.

The moments of the invariant-mass distribution of the hadrons produced by the decay of a heavy lepton can also be
calculated by use of perturbative QCD. For example, the average invariant mass (s) is given by an expression analo-
gous to (3):

(s) 1
' ds s s

i~~ c M2 M2 M2
1+2 IIr(s) —IIL(s)

M

For z decays, the lowest-order QCD prediction is R(s)/M, =9/10. When we include the order-a, and order-a, correc-
tions, the perturbative prediction becomes

(R(s)/M, ) ~"=0.975 T- 0.010,

where the error is due to the uncertainty in A. The leading nonperturbative contributions to (s) are

R = —0.020 +0.002 +0.007
(«(GG) a( )

M, (330 MeV) (240 MeV) (110MeV)

(10)

In contrast to R, the largest contribution comes from the
gluon condensate. If we take into account the uncertain-
ties in the condensate parameters, the contribution (11)
is 0.01 1 —+o'025.

I have shown that the decay rate of a heavy lepton into
hadrons can be calculated reliably by use of perturbative
QCD. For the r lepton, the prediction for the ratio R
defined in (1) is R =3.29. The errors due to the uncer-
tainty in A and to nonperturbative corrections from
operator condensates were calculated to be on the order
of 1%. Moreover, the sign of the nonperturbative correc-
tion was shown to be negative. The resulting QCD pre-
diction is 3 standard deviations below the experimental
result R =3.68 ~ 0.13 derived from the measured
branching fraction B, of the r into electrons. However,
the branching fraction B, can also be determined from
the lifetime of the muon and the measured lifetime of
the r, (3.07+ 0.10)x10 ' s. The result is 8, =(19.2
+ 0.6)%, which leads to the ratio R =3.21 ~ 0.16, which
is in much better agreement with the QCD prediction.
The difr'erence between these two experimental results
for R is related to a long-standing puzzle in r decays:
The sum of the partial widths for the known exclusive
channels falls about 7% short of the total width. ' One
of the possible resolutions of this puzzle is that the mea-
sured branching fraction into electrons is too small by

several standard deviations. If this is indeed the case, it
would bring the measurement of the ratio R for the i
lepton into perfect agreement with the prediction of per-
turbative QCD.

Note added. —Marciano" has pointed out that the
electroweak corrections to the ratio R are significant be-
cause they are enhanced by the logarithm ln(Mz/M, ).
This correction increases the above predictions by about
2%.
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