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Fermion Mass Hierarchy from Radiative Corrections
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A scheme is proposed to explain the hierarchy of fermion masses. In the model presented, which has
no horizontal symmetry, generations pick up masses one by one through radiative corrections as we go to
higher orders in perturbation theory. An extra generation of isosinglet heavy fermions plays an impor-
tant role in implementing the scheme.

PACS numbers: 12.15.Ff

One of the puzzles left unexplained by the standard
model of electroweak interactions is the pattern of fer-
mion masses. Fermions of the first generation are very
light when compared to the electroweak scale. Masses of
other generations are also relatively small. Radiative
corrections can easily generate such small numbers. In
addition, they may help to explain the observed hierar-
chy of these masses. ' I propose a scheme to realize this
idea. In the model implementing the scheme, genera-
tions pick up masses one by one through radiative
corrections as we go to higher loop orders. I do not im-

pose any horizontal symmetry. However, an important
role is played by an extra generation of isosinglet heavy
fermions.

To illustrate the idea, consider a mass matrix M (say,
for the up-quark sector) which at the tree level is of the
form aa t where a is a column vector in the generation
space S. The number of nonzero eigenvalues (or the
rank) of a matrix can be determined by our counting its
zero eigenvalues. The relevant equation is Mx 0 where
x is a vector in S. The number of linearly independent
solutions to this equation is n —r where n is the number
of generations or the order of M and r is its rank. At the
tree level this reduces to atx =0 which can be satisfied
by n —1 linearly independent x's. Hence M has rank
one at this level. This means that one of the generations
has picked up mass. When we go to one-loop level, the
mass matrix will receive some correction. Let us assume
that this correction is of the form bbt, where b is also a
vector in S. Now the number of zero eigenvalues is
determined by a(a tx)+b(b tx) =0 which implies
atx =btx =0. If a and b are linearly independent, then
this is satisfied by n —2 independent x s. This shows that

the mass matrix has rank two. Thus at this order two
generations are massive. This is true even when there
are one-loop corrections proportional to abt and bat as
can be easily seen. If the correction to the mass-matrix
is small then the second eigenvalue will be small. Other
generations get masses one by one as this process is con-
tinued by our going to higher loop levels. Smaller and
smaller eigenvalues get added. This can explain the ob-
served hierarchy of fermion masses. A similar matrix
structure was attempted by Baur and Fritzsch to obtain
the masses of composite quarks and leptons as elec-
tromagnetic self-energies.

Now I present a model which implements the above
scheme. Let us work with left-right symmetry3 where
the gauge group is

SU(3)c SU(2)L 8SU(2)R SU(1)tt
I analyze only the quark sector in this Letter. SU(2)L,
doublet quarks are denoted by QL; where i is the genera-
tion index. Similarly QR; represents SU(2)R doublet
quarks. They all have 8 —L charges —,'. In addition, I
include an extra generation of fermions which are sing-
lets under SU(2)t. S SU(2)R. They are denoted by P
and N having 8 —L charges 3 and —3, respectively.
In addition to Q's, P and N are also color triplets. The
Higgs sector consists of an SU(2)L doublet XL and
SU(2)R doublet XR each with 8 Lcharge 1. In—addi-
tion, I use a scalar field to which is a singlet under
SU(2)L SU(2)R with 8 —L charge —

—,
' . It is taken

to be a color triplet. One also needs a parity-odd singlet
Higgs to break left-right symmetry. However, it will
not affect the results. With this set of fields we can write
down the Yukawa couplings (along with the mass terms
for P and N) as follows:

Lv =QijHtt (Qz; C '
r2toQLj +QRi C &2toQRj ) +Xi hi (QLiXLPR+ QRiXRPt).

+g; hi~(QLiXLNR+ QRiXRNL ) +f(PL C 'toNL+ PR C 'toNR ) +MPPr PR+ Miv Nt NR+ H.c.,

where C is the charge-conjugation matrix, r2 is the SU(2) metric, and X=ir2X . Parity conservation is assumed for
simplicity. Color indices are suppressed. 0;J is found to be a symmetric matrix. m, being charged, does not receive any
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vacuum expectation value. The vacuum expectation values for XL and Zn are

0(XL)=, (ZR) =
UL

0
UR

(2)

In the following the mass matrix is analyzed for the up sector only. The same can be carried out for the down sector.
The mass terms for the up sector including P are, in general, of the form

Jl™~juL;uz, +P;via; uL;Pz +P, vnPJ PLun, ™pPLPR+H.c., (3)

QJBMfJXJ + vLa;x„+1 0,

givnpi xj+Mpx„+i 0.

Eliminating x„+i from above, we get

g (bMi +aoa;P*)x 0,

(s)

where ao —vLun/Mp. I will refer to the combination

bM+aoaP as M. For Mp large compared to uL and vg,
which I refer to as the seesaw limit, M coincides with the
mass matrix for the up sector excluding P. If M has

rank r and n is its order (for n ordinary generations)
then there are n —r linearly independent solutions to (6).
This shows that MT has n —r zero eigenvalues and

hence, being a matrix of order n+1, it has rank r+ l.
This means that there are r+1 nonzero eigenvalues to
MTMj. One of them corresponds to a heavy fermion

representing P. Thus r generations are massive at this

order. Our problem is reduced to finding the rank of M.
At the tree level, we found that bM 0 and a=P=h .
Thus aoh h is the tree-level contribution to M. In this

case r 1. Only one ordinary generation has gained
mass at this level. The corresponding mass eigenvalue,
in the seesaw limit, has the value aoh ~h at the tree lev-

el. In the n=3 case, top and bottom quarks become
massive at this order.

Our problem is to examine how r increases as we go to
higher loop levels. At one-loop level, BM gets a contri-
bution from the graph shown in Fig. 1(a) which is pro-

where u stands for the up sector of the quark doublet.
This results in the following mass matrix:

BMJ vLa
(4)

unP/' Mp

From (1) and (2) we find that at the tree level bM 0
and a P h . BM comes purely from radiative correc-
tions. We note that there are no counterterms in the
bare Lagrangean to cancel any divergent contributions to
BM at any order. Hence renormalizability implies that
BM is finite. Other parameters in (4) also receive some

corrections. The number of massive fermions in the up
sector is given by the rank of MTM$ or M)MT. But

M)MT and MT have the same rank. This is because
M jMTx 0, which gives the number of zero eigenval-

ues, implies MTx 0 and vice versa. To find the rank of
MT, consider the problem of counting its zero eigenval-

ues. The relevant set of equations is

portional to Hth *(Hth *)t. There is another one-

loop graph with EL and Zg in the internal boson line.
However, its contribution, being proportional to the
tree-level value of M, will not change r. a and P also re-
ceive corrections proportional to Hth *. Following our
discussion at the beginning of the Letter, we find that r
becomes 2 at one-loop level if h and Hth * are linearly
independent. This ensures mass hierarchy for n 3.
Then charm and strange quarks pick up masses at one-
loop level while up and down quarks do so at two-loop
order. Example of a two-loop graph is given in Fig.
1(b). We will find later that the dominant contributions
to the charm and the up-quark masses are given by the
graphs of Figs. 1(a) and 1(b), respectively. We note an
important property of all the graphs contributing to 6'M.

A quark line does not lose its dependence on the genera-
tion index by coupling to ru. However, to give a correc-
tion to the mass matrix, it has to get converted to P or ¹

At this transition the index dependence is lost. This has
the effect of factorizing the correction into a form ab t.
This property is responsible for producing a hierarchy of
mass eigenvalues. If there is only one new vector intro-
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FIG. 1. Examples of one- and two-loop graphs contributing

to the up-quark mass matrix.
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duced at each order, mass hierarchy is ensured when all

such vectors form a linearly independent set. But for
n ) 3, one finds that two new vectors are introduced at
two-loop level thereby incrementing the rank by two.
However, the number of eigenvalues significant at that
order increases only by one as can be shown by the fol-
lowing analysis.

Let us perform perturbative analysis on M to obtain
the dominant contributions to its eigenvalues. I will

show that these eigenvalues are ordered in successive
powers of the loop expansion parameter (which is essen-

tially I/16m coming from loop integration). Collecting
the radiative corrections from various loop levels, we get
the following expansion for M:

M =Mp+A. M)+X M2+ (7)

I m) =
I
0)+)

I
I)+) 'I 2)+

I will show that there exists only one eigenvector with

mp~0, only one with mp =0, but m&~0, only one with
mp=mi =0, but m2AO, and so on. Besides ensuring
hierarchy, this will give us the dominant contributions to
the eigenvalues. For this purpose, we substitute (7) and

(8) into M I m) =m
I m) and collect the coefficients of

each power of k. We obtain a set of equations of which
the first three are

(M, —m. ) IO) =O,

(Mp —mp) I
1)+(Mi —mi) 10) =0,

(9)

(lo)

(Mp —mp) I »+(Mi —mi) Il)+(M2 m2) IO) =O.
(11)

Before proceeding further, let us look for a general ex-
pression for M;. Mp, being the tree-level value of M, is
given by apIh&&h I. I have dropped the superscript P
which will be implicit at the relevant places from now on.
Figure 1(a), contributing to BM at one-loop order, is
proportional to IHh)&Hh I where Hh= Hth *. Figure—
1(b), significant at two-loop level, is proportional to
IH h)&H h I where H h:HtHh . Contrib—utions from

other graphs can be similarly found. There are also
corrections to a and P. Looking at some of the graphs
one can come up with a general expression for M;:

a; k) I
H"h&&H'h

I
.p( k+I ( 2i

H is a short form for H HH~H. . . involving k ma-

where X keeps track of the loop orders and M; contrib-
utes at ith-loop level. To find the eigenvalues of M, we
have to solve the equation M I m) =m

I m) where
I
m) is

an eigenvector of M with eigenvalue m. I use the bra
and ket notation for vectors in the generation space. In
analogy to (7), we assume the following expansions for
mand Im):

m =mp+Xm i+A. m2+

trices. In H"h, h =h if k is even and h =h * other-
wise. Some of the coefficients in (12) will be zero if
there are no graphs contributing to them (for instance,
ai 2p=ai pq=o). ai ii and a22q are obtained by the
evaluation of the finite graphs shown in Figs. 1(a) and
1(b), respectively. In the following, we find that the
dominant contributions to the first three eigenvalues of
M are

PiMiPi Io&=mi Io), (13)

which is an eigenvalue equation for the matrix PiMiPi.
Mi can be obtained from (12) with i =1. Then PiMiPi
simplifies to a i i i Pi I

Hh) &Hh I P i. Using this in (13),we
find that I 0)cLPi

I
Hh) is the only solution with miAO.

The corresponding eigenvalue is

m=mi =ai il&Hh I Pi IHh).

Next we come to the case mp=mi =0, but m2&0.
Again (9) implies that &h I 0& =0 leading to Pi I 0) =

I 0).
Multiplying (10) by Pi, we get (13). However, since
now m i =0, (13) says that &Hh

I
0) =0 leading to

P2I0) = Io). Multiplying (11) by P2 and noting that
P2Mp =PzMi =0, we find that m2 is an eigenvalue of
the matrix P2M2P2. With M2 obtained from (12) this
matrix simplifies to a222P2IH h&&H h IP2. Following
our earlier analysis, we find that only one vector with

I 0)a:P2 I H h) picks up a nonzero eigenvalue given by
m=m2=a222&H h IP2IH h) at this order. What we
have shown above is that for n ~ 3, the number of
significant eigenvalues of M increases by one at each or-
der until it becomes n One can p. rove this by induction
for any n. The eigenvalues we have obtained are the
mass eigen values in the seesaw limit. Perturbative
analysis on MTM) will give us these masses in the gen-
eral case. For Mp, vga) vL, , the tree-level mass eigen-
value is (1+v~&h I h)/Mp) ') ap&h I

h). Other eigenval-
ues that we obtained in the seesaw limit are the dom-
inant contributions to the masses in the general case as
well.

The model as such cannot explain the hierarchy of
mixing angles. This is because the matrices that diago-
nalize the up and down mass matrices are in general
different at the tree level itself. However, one accounts

ap&h I h&, «, ii&Hh IPi IHh&, a222&H'h IP2IH'h&,

where Pi and P2 are projection operators satisfying
Pi I h) =0 and P2 I h) =P2

I Hh) =0. In order that the ei-
genvalues are not trivially zero, the set (h, Hh, . . . ,
H" 'hJ should be linearly independent.

Let us start with mpAO. Using Mp =ap
I h)&h I in (9),

we find that Io)~ Ih) is the only solution with this
property. The corresponding eigenvalue is m =mp
=ap&h Ih). Next let us consider the case mp=o, but
m i eo. Now (9) tells us that &h I 0) =0 implying
Pi I 0) = IO). Multiplying (10) by Pi and noting that
PiMp =0, we get
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for the observed mixing hierarchy by equating ttt and h

with a softly broken discrete symmetry. The result is

that the mixings V„, and V,s are of O(k) while V„s is of
O(A, ). This symmetry leads to an understanding of the
isodoublet mass splittings as well. From the seesaw-
limit expression for the tree-level mass eigenvalue, one
notes that m, »mb requires M~&&Mp. Since N and P
quarks contribute respectively to the up and down sectors
at one loop and vice versa at two loops (as can be seen
from Fig. 1), we naturally obtain m, ) rn, and m„( md
when mass of to is of the order of Mtv. Up to now our
discussion was confined to the quark sector. Mass hier-
archy in the charged-lepton sector will follow from a
similar analysis. One introduces a scalar t) and two

heavy leptons N and E to play the role of tu, P, and N,
respectively. However, to explain the lightness of the
neutrinos, one needs to invoke the seesaw mechanism.
If the heavy neutrino N has a Majorana mass term, one
of the right-handed neutrinos picks up a heavy Majorana
mass at the tree level while others do so from radiative
corrections thereby leading to light neutrinos in the ob-
served sector. ' The ordering that was assumed among
the various mass scales vL, Utt, Mp, Mtv, and M„needs a
natural explanation which is absent in my model. The
masses of the isosinglets are not fixed relative to vL or vg
since they are not protected by any symmetry. These
topics need further study.

In conclusion, I note that radiative corrections can ex-
plain the hierarchy of fermion masses. A matrix 0,
given by a coupling of quarks to a field that does not re-
ceive any vacuum expectation value, and a vector h, re-
sponsible for one ordinary generation to pick up mass at
the tree level, are the main ingredients of my scheme. It
is of interest to look for other possible implementations
of this mechanism.
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